非线性随机混杂系统的鲁棒耗散控制

2012-01-10 03:05夏国坤林忠伟
天津科技大学学报 2012年2期
关键词:鲁棒控制范数线性

夏国坤,林忠伟

(1. 天津科技大学理学院,天津 300457;2. 华北电力大学控制与计算机工程学院,北京 102206)

非线性随机混杂系统的鲁棒耗散控制

夏国坤1,林忠伟2

(1. 天津科技大学理学院,天津 300457;2. 华北电力大学控制与计算机工程学院,北京 102206)

针对一类带有多维噪声的带范数有界不确定项的非线性随机混杂系统,通过构造随机跳变系统的随机耗散性理论,给出了该类系统的耗散性定义、耗散不等式,以及系统保证耗散性的充分条件.在此基础上,针对带范数有界不确定项的非线性随机混杂系统,进行鲁棒状态反馈耗散控制,即通过求解线性矩阵不等式,设定状态反馈鲁棒控制器,使得在此控制作用下闭环系统满足耗散性.

非线性系统;随机系统;混杂系统;鲁棒控制

近年来,针对 Markov跳变系统、Itô微分系统的随机 H∞控制得到广泛关注[1–10].其中,文献[2]针对线性随机 Itô系统讨论了 H∞控制问题,并得到以LMIs形式的有界实引理,为 H∞滤波器、H2/H∞控制等相关问题的研究奠定了基础.但对于非线性随机系统领域,仍有大量有待解决的问题.文献[8]利用耗散性理论讨论了非线性随机 H∞控制.文献[9]基于Lyapunov-Krasovskii函数方法,针对非线性随机时滞跳变系统,设计无记忆状态反馈耗散控制器.事实上,通过定义不同的供给率,耗散性理论可以反映相应的系统性质,见文献[10–11].

从 20世纪 60年代针对线性跳变系统的二次最优控制研究至今,跳变系统已得到了广泛关注.其各模态之间的随机切换符合一定的统计特性——有限状态空间中各个模态之间的转移服从 Markov跳变过程,因而被视为一类特殊的随机系统.近 30年针对线性跳变系统的稳定性分析和控制器、滤波器设计已有大量的重要成果[3,5,12].尤其是针对该类系统设计状态反馈控制器来满足稳定性、H∞指标或保代价控制等问题已有较好结果.

同时,许多研究人员致力于研究带范数有界不确定项的跳变系统,又称混杂系统.工程领域中的大量受随机突变影响的动态系统,如制造系统、电力系统以及网络通信系统等,均可由这类系统表示.针对该类系统的稳定性、镇定控制、H∞控制和滤波等问题已得到大量结果[13].但目前针对非线性随机混杂系统的耗散性应用研究仍需做进一步的研究.

本文研究一类带多维Wiener噪声的非线性随机混杂系统的鲁棒耗散控制问题.针对该类系统提出了耗散不等式及存储函数等定义,给出了相应的广义随机 Lur’e等式,并针对带范数有界不确定项的随机混杂系统进行耗散控制器设计,给出基于 LMIs的充分条件.

[1]Doyle J C,Glover K,Khargonekar P P,et al. Statespace solutions to standard H2,H∞control problems[J].IEEE Transactions on Automatic Control,1989,34(8):831–847.

[2]Hinrichsen D,Pritchard A J. Stochastic H∞[J]. SIAM Journal on Control and Optimization,1998,36:1504–1538.

[3]Shi P,Boukas E K. H∞-control for Markovian jumping linear systems with parametric uncertainty [J]. Journal of Optimization Theory and Applications,1997,95(1):75–99.

[4]Drăgan V,Morozan T. Methods in Robust Control of Linear Stochastic Systems [M]. New York:Springer,2006.

[5]Mao X,Yuan C. Stochastic Differential Equations with Markovian Switching[M]. London:Imperial College Press,2006.

[6]Lewin M. On the boundedness,recurrence and stability of solutions of on ito equation perturbed by a Markov chain [J]. Stochastic Analysis and Applications,1986,4(4):431–487.

[7]Limebeer D J N,Anderson B D O,Hendel B. A Nash game approach to mixed H2/H∞[J]. IEEE Transactions on Automatic Control,1994,39(1):69–82.

[8]Berman N,Shaked U. H∞-like control for nonlinear stochastic systems [J]. Systems & Control Letters,2005,55(3):247–257.

[9]Xu L J,Zhang T P,Yi Y. Robust dissipative control for uncertain stochastic systems with Markovian switching and time-varying delay [J]. Journal of Southeast University:Natural Science Edition,2010,40(s1):198–205.

[10]Willems Jan C. Dissipative dynamical systems part I:General theory [J]. Archive for Rational Mechanics and Analysis,1972,45(5):321–353.

[11]Van der Schaft A J. L2- gain analysis of nonlinear systems and nonlinear state-feedback H∞control [J]. IEEE Transactions on Automatic Control,1992,37(6):770–784.

[12]Li X,Zhou X Y,Rami M A. Indefinite stochastic linear quadratic control with markovian jumps in infinite time horizon [J]. Journal of Global Optimization,2003,27(2/3):149–175.

[13]Boukas E K. Stochastic Hybrid Systems:Analysis and Design[M]. Boston:Birkhauser,2005.

Robust Dissipative Control of Nonlinear Stochastic Hybrid System

XIA Guokun1,LIN Zhongwei2
(1. College of Science,Tianjin University of Science & Technology,Tianjin 300457,China;2. School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)

Aimed at a class of nonlinear stochastic hybrid systems with norm-bounded uncertainties under multidimensional Wiener noise,the dissipativity definition,the dissipative inequality and the sufficient conditions of dissipativity were determined,through establishing a corresponding stochastic dissipativity theory. Based on this dissipativity theory,the robust state-feedback dissipative control of the nonlinear stochastic hybrid system with norm-bounded uncertainties was designed,that is,through solving a set of linear matrix inequalities(LMIs),the robust state-feedback dissipative control can be worked out to guarantee the dissipativity of a closed-loop system.

nonlinear systems;stochastic systems;hybrid systems;robust control

O231

A

1672-6510(2012)02-0074-05

2011–10–09;

2011–12–13

夏国坤(1978—),女,吉林人,讲师,xiagk@tust.edu.cn.

周建军

猜你喜欢
鲁棒控制范数线性
渐近线性Klein-Gordon-Maxwell系统正解的存在性
线性回归方程的求解与应用
向量范数与矩阵范数的相容性研究
可控励磁直线同步电动机跟踪与干扰抑制H∞鲁棒控制器设计
针对输入时滞的桥式起重机鲁棒控制
二阶线性微分方程的解法
飞翼无人机机动飞行非线性鲁棒控制方法
基于加权核范数与范数的鲁棒主成分分析
基于高阶奇异值分解的LPV鲁棒控制器设计
如何解决基不匹配问题:从原子范数到无网格压缩感知