陈治友,夏顺友
( 1.贵阳学院 数学系,贵州 贵阳 550005;2.贵州师范学院 数学与计算机科学学院,贵州 贵阳 550018 )
抽象凸空间中的不动点与变分不等式
陈治友1,夏顺友2
( 1.贵阳学院 数学系,贵州 贵阳 550005;
2.贵州师范学院 数学与计算机科学学院,贵州 贵阳 550018 )
本文将H−空间中的Fan−Glicksberg−Kakut ani不动点定理推广到抽象凸空间中,并在抽象凸空间中给出一个不具拟凹性的函数的KyFan不等式的解的存在性定理。
抽象凸空间;H0−条件; 不动点定理;KyFan不等式
1987年,Horvath[1]用拓扑性质定义了具有H−凸结构的H−空间,该空间的H−凸结构将先前的线性凸结构做了推广。而后,在国内外一些专家学者的深入研究下,在一般拓扑空间中涌现了大量的凸结构,如:半格凸、G−凸、B−凸、VandeVel凸、Michael−凸、L−凸、超凸等等。2007年,向淑文,杨辉,夏顺友[2][3]通过对上述众多的凸结构进行研究,发现它们有一个共性特征,即都满足H0−条件,并且提出了更具一般意义的抽象凸结构的抽象凸空间。本文在满足H0−条件的该抽象凸空间中推广了H− 空间中的Fan−Glicksberg−Kakut ani不动点定理,[4]并在该抽象凸空间中给出一个不具拟凹性的函数的KyFan不等式[5]的解的存在性定理。
定义1[2]设C是Y的子集族,称序对(Y,C)为抽象凸结构空间,或简称抽象凸空间,如果C满足:
[1]C.D. Horvath. Some results on multivalued mappings and inequalities without convexity[J]. in: B.L. Lin, S. Simons(Eds.), Nonlinear and Convex Analysis, in: Lecture Notes in Pure and Applied Math., Marcel Dekker, 1987,107:99–106.
[2]S.W Xiang, H.Yang. Some properties of abstract convexity structures on topological spaces[J]. Nonlinear Analysis,2007,67:803-808.
[3]Shu-wen Xiang, Shunyou Xia. A further characteristic of abstract convexity structures on topological spaces[J].J.Math.Anal.Appl. 2007, 335:716-723.
[4]向淑文.H-空间中集值映象的不动点定理[J].数学杂志,1997,17-3:311-314.
[5]K. Fan, A min-maxinequalityand applications, Inequalities III Shisha, ed., Academic Press (1972), 103-113.
[6]NAN-JING HUANG, YA-PING FANG. On Vector Variational Inequalities in Reflexive Banach Spaces[J].Journal of Global Optimization,2005, 32: 495–505.
[7]Fu-Quan Xia, Nan-Jing Huang. Algorithm for solving a new class of general mixed variational inequalities in Banach spaces[J]. Journal of Computational and Applied Mathematics, 2008,220:632–642.
[8]LI Yan, XIA Fu-Quan. Iterative Algorithm for Solving Generalized Mixed Variational Inequalities in Banach Spaces[J]. Journal of Sichuan Normal University (Natural Science), 2011,34(1):13-19.
[9]LIU Zhi, HE Yi-ran. An Existence of Solution to Set valued Variational Inequalities[J]. Journal of Sichuan Normal University (Natural Science), 2010, 33(2):156-158.
[10]HE Yi-ran. Theory on Variational Inequality Involved with Set valued Mapping[J]. Journal of Sichuan Normal University (Natural Science), 2010, 33(6):840-848.
Fixed Points and Variation Inequalities in Abstract Convex Spaces
CHEN Zhi-you1, XIA Shun-you2
(1. Department of Mathematics, Guiyang University, Guiyang, Guizhou 550005, China;2. Department of Mathematics and Computer science, Guizhou Normal College, Guiyang, Guizhou 550018, China)
This paper generalizesFan-Glicksberg-Kakut ani’s fixed point theorem about H-spaces to abstract convex spaces and, works out an existence theorem for solution of Ky Fan inequality of functions without quasi-convexity in abstract spaces.
abstract convex spaces; H0-space; fixed point theorem; Ky Fan inequality
(责任校对 黎 帅)
O177.91
A
1673-9639 (2012) 04-0127-03
2012-05-21
本文系国家自然科学基金(11161008)成果。
陈治友(1965-),男,贵州务川人,硕士,副教授,研究方向:非线性分析、对策论与集值优化理论。
(责任编辑 毛 志)