1-1-3型压电复合材料宽带换能器

2011-06-05 09:00蓝宇张凯
哈尔滨工程大学学报 2011年11期
关键词:小柱换能器压电

蓝宇,张凯,2

(1.哈尔滨工程大学水声技术国家级重点实验室,黑龙江 哈尔滨150001;2.杭州应用声学研究所,浙江 杭州310012)

1-3型压电复合材料换能器具有很多优点[1]:其重量轻、易于共形、声阻抗率低、利用其制作的换能器的有效机电耦合系数高、接近于压电陶瓷相的k33.20世纪70年代末,美国宾州州立大学的Newnham教授首先提出了1-3型压电复合材料的概念[2],在此基础上人们对其做了广泛的研究[3].同时人们对1-3型压电复合材料在水声换能器上的应用也做了很多研究工作.美国的Thomas R.Howarth制作了尺寸为254 mm×254 mm×6.35 mm的大面积1-3型压电复合材料换能器[4].美国水下作战中心的Kim C.Benjamin利用1-3型压电复合材料制作了直径为76 cm的参量阵,名为USRD-82[5].英国的S.Cochran等人在1-3型单晶压电复合材料前加匹配层制作了带宽超过一个倍频程的水声换能器[6].土耳其的I.Ceren Elmash在1-3型压电复合材料前加匹配层制作了宽带、宽波束的水声换能器,该换能器可以应用于水声通信领域[7].韩国的Zhi Tian等人利用在1-3型压电复合材料圆管外表面加匹配层制作了宽带圆管换能器[8].

本文将单端激励的原理引入1-3型压电复合材料中,在此基础上提出了一种1-1-3型压电复合材料结构,并且利用有限元方法,运用大型有限元软件ANSYS分析了1-1-3压电复合材料的频率特性和阻抗特性,利用1-1-3型压电复合材料的一阶厚度振动模态、二阶厚度振动模态和三阶厚度振动模态的耦合设计并制作了带宽为2个倍频程的1-1-3型压电复合材料宽带换能器.从而也解决了高频换能器(频率大于100 kHz)实现宽带发射的难点.

1 1-1-3型压电复合材料的概念

1-1-3型压电复合材料是由一维连通的压电小柱和一维连通的金属小柱平行排列于三维连通的聚合物基体中而构成的三相压电复合材料,压电小柱的极化方向与压电小柱高度方向相同.常用的压电小柱材料有PZT4、PZT5和弛豫铁电单晶等;常用的金属小柱材料有钢、铝和铜等;常用的聚合物材料有环氧树脂、聚氨酯和聚亚胺酯等.1-1-3型压电复合材料的示意图如图1所示.

图1 1-1-3型压电复合材料示意Fig.1 Schematic representation of 1-1-3 piezocomposite material

2 1-1-3型压电复合材料宽带换能器的工作原理

在两端自由的条件下,压电小柱纵向振动的基频公式为

式中:c为压电小柱纵向振动的声速,l为压电小柱的长度.压电小柱高阶纵向振动模态频率的公式为

通常,压电换能器的压电陶瓷堆之间是并联连接的,如图2所示,如果将其分为左右2个部分,其振动是同相的,也就是同时扩张或收缩,因此称图2(a)所示的激励方式为左右同相激励.由于同相激励只能激励出位移对称的奇数阶纵向振动模态,无法激励出偶数阶模态.因此,在第2阶纵向振动模态的谐振频率处端面的位移很小,发送电压响应曲线上出现了一个很深的凹谷,如图3(a)曲线1所示.为了激励出第2阶纵向振动模态,须采用如图2(b)所示左右反相激励,其发送电压响应曲线如图3曲线2所示.如果,将2种激励叠加在一起,如图2(c)所示,其效果与图2(d)相同,相当于单端激励,此时,前三阶纵向振动模态全部被激励出来,发送电压响应如图 3(b)所示,比较平坦[9].

图2(d)也可以代表1-1-3型压电复合材料的复合小柱,其左端为压电陶瓷小柱,右端为金属小柱,也相当于单端激励,其发送电压响应与图3(b)类似,有效地拓宽了压电复合材料换能器的带宽.

图2 压电陶瓷堆的不同激励方式Fig.2 Different excitations of piezoelectric ceramic stack

图3 不同激励方式下的发送电压响应Fig.3 The transmitting voltage response under different excitations

3 1-1-3型压电复合材料宽带换能器的有限元分析

3.1 有限元分析的理论基础

利用ANSYS建立的整个1-1-3型压电复合材料换能器有限元模型的运算时间会很长,由于1-1-3型压电复合材料具有二维周期性的特点,因此可以通过分析1-1-3型压电复合材料中的一个周期的性能来分析1-1-3型压电复合材料换能器的性能.在1-1-3型压电复合材料换能器中,除了边缘处的周期单元,其他单元的负载基本相同,此时只需分析其中的一个周期单元.这样可以认为单个周期单元处于一刚性壁波导中的一端,而在波导的另一端施加边界条件.然后,可以利用ANSYS软件计算出波导水柱中的声压.

最后可以利用波导中的声压得出1-1-3型压电复合材料换能器的远场声压.而波导中的波可视为声压为pp和质点振速为pp/ρc的平面波.假设所有周期法向振速相同,ρc负载相同,那么由功率守恒原理可得,1-1-3型压电复合材料换能器的总辐射功率为所有周期辐射功率之和:

式中:N为周期数,A为单个周期面积.由指向因素的概念可知,上述功率与远场声强的关系为

式中:距离1-1-3型压电复合材料换能器声轴方向r处的远场声压为p.

由于平面活塞辐射器的指向性因素[10]为

从而可得pp(ANSYS计算的值)与p(1-1-3型压电复合材料换能器轴向远场声压)的关系为

由于1-1-3型压电复合材料换能器的边缘周期声负载比中间周期的小,式(6)只是一个近似解.因此解的精确性依赖于边缘周期的数量.

3.2 有限元模型的建立

在分析时只建立一个周期(一个周期包含一根压电陶瓷小柱、一根金属小柱及其周围的环氧树脂)的有限元模型,在边界上施加一定边界条件来模拟整个1-1-3型压电复合材料换能器.

利用ANSYS软件来建模,压电小柱为PZT4,金属小柱为黄铜,聚合物相为环氧树脂,复合材料圆片的厚度为12 mm,周期数为204个.最终制作的换能器辐射面灌注环氧树脂胶层.为节省计算时间,只建立了一周期的1/4有限元模型,流体域为一刚性壁波导,如图4所示.

图4 1-1-3型压电复合材料宽带换能器一个周期的1/4有限元模型Fig.4 The one-fourth finite element model for a unite cell of the 1-1-3 piezocomposite broad-band transducer

3.3 模态分析

通过对1-1-3型压电复合材料一个周期的有限元模型进行模态分析,可得到1-1-3型压电复合材料的厚度共振频率和模态振型.

图5为1-1-3型压电复合材料一个周期的振动位移矢量图,其一阶厚度振动位移矢量图如图5(a)所示,模态频率为138 kHz;二阶厚度振动位移矢量图如图5(b)所示,模态频率为280 kHz;三阶厚度度振动位移矢量图如图5(c)所示,模态频率为454 kHz.

图5 1-1-3型压电复合材料的厚度共振模态Fig.5 The thickness model of the 1-1-3 piezocomposite material

3.4 谐波响应分析

利用ANSYS软件提供的谐波响应分析模块,计算出换能器在水中的导纳曲线,如图6所示.

图6 1-1-3型压电复合材料宽带换能器在水中的导纳曲线Fig.6 The admittance of the 1-1-3 piezocomposite broad-band transducer in water

从图6可知:1-1-3型压电复合材料宽带换能器在水中的电导最大值为4.5 m,该处谐振频率为280 kHz.

利用ANSYS软件提供的流固耦合分析功能,提取刚性壁波导中一个节点上的声压,再由式(6)得出整个1-1-3型压电复合材料宽带换能器的远场声压,根据发送电压响应的定义计算换能器水中的发送电压响应曲线,如图7所示.

图7 1-1-3型压电复合材料宽带换能器的发送电压响应曲线Fig.7 The transmitting voltage response of the 1-1-3 piezocomposite broad-band transducer

从图7可知:1-1-3型压电复合材料宽带换能器的工作带宽为125~490 kHz,发送电压响应最大值为171 dB.

4 1-1-3型压电复合材料宽带换能器的试验分析

按照设计尺寸制作了1-1-3型压电复合材料宽带换能器,如图8所示,图的左侧为1-1-3型压电复合材料,右侧为1-1-3型压电复合材料宽带换能器.

图8 1-1-3型压电复合材料宽带换能器示意Fig.8 Schematic representation of the 1-1-3 piezocomposite broad-band transducer

利用HP4194阻抗分析仪测量了换能器在空气中和水中的频率特性和阻抗特性,如图9所示.

图9 1-1-3型压电复合材料宽带换能器的测试导纳Fig.9 The measured admittance of the 1-1-3 piezocomposite broad-band transducer

图9(a)为1-1-3型压电复合材料的导纳图,其一阶厚度谐振频率为127 kHz,电导峰值为4.1 mS;其二阶厚度谐振频率为 285 kHz,电导峰值为16.5 mS;其三阶厚度谐振频率为414 kHz,电导峰值为2.3 mS.图9(b)为1-1-3型压电复合材料宽带换能器水中的导纳图,其一阶厚度谐振频率为125kHz,电导峰值为1.7 mS;其二阶厚度谐振频率为292 kHz,电导峰值为9.1 mS;其三阶厚度谐振频率为 416 kHz,电导峰值为 1.6 mS.

在水池利用脉冲法测量s了换能器的发送电压响应,其结果如图10所示.由图可知测得的1-1-3型压电复合材料宽带换能器的工作带宽为112~450 kHz,发送电压响应峰值为174 dB.

图10 1-1-3型压电复合材料宽带换能器的测试发送电压响应曲线Fig.10 The measured transmitting voltage response of the 1-1-3 piezocomposite broad-band transducer

对比测试结果与计算结果,可以看出,无论是导纳曲线还是发送电压响应曲线,计算与测试的趋势基本一致,但还存在一定的误差.这是因为:1)制作的1-1-3型压电复合材料的结构尺寸存在误差,这就使得实测的频率特性与计算的频率特性有一定的差异;2)利用3.1节的有限元算法存在误差导致实测的发送电压响应与计算的发送电压响应有一定的差异.

5 结束语

本文基于单端激励的思想,提出了一种新的压电复合材料结构,即1-1-3型压电复合材料,并且利用其制作了一个工作带宽为112~450 kHz,发送电压响应最大值为174 dB的高频宽带水声换能器.

上述工作表明利用1-1-3型压电复合材料的一阶厚度振动模态、二阶厚度振动模态和三阶厚度振动模态的耦合可以制作高频宽带水声换能器,同时也给出了一种高频换能器实现宽带发射的方法.

[1]李邓化,居伟骏,贾美娟,等.新型压电复合材料换能器及其应用[M].北京:科学出版社,2007:6-7.

[2]NEWNHAM R E,SKINNER D P,CROSS L E.Connectivity and piezoelectric-pyroelectric composites[J].Mat Res Bull,1978,13(5):525-536.

[3]TRESSLER J F,ALKOY S,DOGAN A.Functional composites for sensors,actuators,and transducers[J].Composites,1999,Part A 30:477-482.

[4]HOWARTH T R,TING R Y.Electroacoustic evaluations of 1-3 piezocomposite sonopanel materials[J].IEEE Trans Ultrason Ferroelec Freq Contr,2000,47(4):886-894.

[5]BENJAMIN K C,PETRIE S.The design,fabrication,and measured acoustic performance of a 1-3 piezoelectric composite navy calibration standard transducer[J].J Acoust Soc Am,2001,109(5):1973-1978.

[6]COCHRAN S,PARKER M,FRANCH P M.Ultrabroadband single crystal composite transducers for underwater ultrasound[C]//Ultrasonics Symposium,2005 IEEE.[s.l.],2005:231-234.

[7]ELMASH I C,KOYMEN H.A wideband and a wide-beamwidth acoustic transducer design for underwater acoustic communications[C]//Oceans 2006-Asia Pacific.Singapore,2007:1-5.

[8]ZHI T,YONGRAE R,WONHO K.Optimal design of an underwater piezocomposite ring transducer[C]//Ultrasonics Symposium,2008 IEEE.[s.l.],2008:1405-1408.

[9]BULTER A L,BULTER J L.Multiple resonant wideband transducer apparatus[P].America:US6950373B2,2005.

[10]SHERMAN C H,BULTER J L.Transducers and arrays for underwater sound[M].Berlin:Springer,2006.

猜你喜欢
小柱换能器压电
志向
《压电与声光》征稿启事
新型压电叠堆泵设计及仿真
鼓形超声换能器的设计与仿真分析
新乡:小城失败者
超磁致伸缩复合棒换能器研究
基于高频发射换能器的功放设计
耳后游离皮片在修复鼻小柱与上唇粘连外翻畸形中的临床应用
基于压电激振的弹性模量测量方法
压电复合悬臂梁非线性模型及求解