李宇华
(山西大学数学科学学院,山西太原 030006)
*一类四阶边值问题的变号解
李宇华
(山西大学数学科学学院,山西太原 030006)
利用拓扑度理论和Mo rse理论研究方程u(4)(t)=f(t,u),t∈(0,1),且带有边界条件u″(0)=u″(1)=0,u(0)=u(1)=0.在一定条件下,得到此问题有六个解,其中两个正解,两个负解,两个变号解.
临界群;变号解;Mo rse理论
本文研究以下四阶方程
目前已经有许多文章研究四阶边值问题(1),见文献[1-3],例如,利用锥拉伸和锥压缩不动点定理,得到其正解的存在性,见文[1].利用临界点理论得到非平凡解的存在性,见文献[2],文献[3]利用拓扑度理论研究了变号解的存在性.然而他们没有考虑共振情形,也没有考虑f0(t)和f∞(t)不等于常数的情形,本文把拓扑度理论和Morse理论结合起来,考虑了各种情形下问题(1)的变号解的存在性与多重性,把跨特征值和共振情形统一起来,推广了文献[3]的结果.这是仅仅利用拓扑度理论或Morse理论都无法得到的.本文假设f满足以下条件:
[1] Liu B.Positive Solutions of Fourth-order Two Point Boundary Value Problems[J].Appl Math Com put,2004,148:407-420.
[2] Li F,Zhang Q,Liang Z.Existence and Multiplicity of Solutions of a kind of Fourth-order Boundary Value Problem[J].Nonlinear Anal,2005,62:803-816.
[3] Pang C,Dong W,Wei Z.Multiple Solutions fo r Fourth-order Boundary Value Problem s[J].J Math Anal A pp l,2006,314:464-476.
[4] Chang K C.Infinite Dimensional Morse Theory and Multiple Solution Problem s[M].Boston:Birkhäuser,1993.
[5] Maw hin J,Willem M.Critical Point Theory and Hamiltonian System[M].Berlin:Sp ringer,1989.
[6] Li F,Li Y.Multiple Sign-changing Solutions to Semilinear Ellip tic Resonant Problem s[J].Nonlinear Anal,2010,72:3820-3827.
[7] Li S,Liu J.Computations of Critical Groups at Dgenerate Critical Point and Applications to Nonlinear Differential Equations w ith Resonance[J].Houston J Math,1999,25:563-582.
[8] Zou W,Li S,Liu J.Nontrivial Solutions fo r Resonant Cooperative Elliptic System s Via Computations of Critical Groups[J].Nonlinear Anal,1999,38:229-247.
[9] 郭大钧.非线性泛函分析[M].2版.济南:山东科学技术出版社,2003.
[10] Guo D,Lakshmikantham V.Nonlinear Problem s in Abstract Cones[M].New York:Academic Press,1988.
Sign-changing Solutions to Fourth-order Boundary Value Problem
LI Yu-hua
(School of Mathematical Sciences,Shanxi University,Taiyuan030006,China)
The problemu(4)(t)=f(t,u),t∈(0,1)with the boundary value conditionsu″(0)=u″(1)=0,u(0)=u(1)=0 is studied by using topological degree and Morse theory.Under some conditions,w e obtain this problem has at least six solutions,including two positive solutions,two negative solutions and two sign-changing solutions.
critical group;sign-changing solutions;Morse theory
O152.7
A
0253-2395(2011)01-0001-04*
2010-08-05;
2010-09-07
国家自然科学基金(10771128;11071149);山西省自然科学基金(2006011002;20100110011)
李宇华(1981-),女,山西五台人,讲师,在读博士.E-mail:yhli@sxu.edu.cn