马尾松纯林阔叶化改造对土壤碳氮固持的短期效应

2024-12-31 00:00:00王浩东陈梦袁丛军何爽丁访军杨瑞
中南林业科技大学学报 2024年10期

摘 要:【目的】为了解马尾松纯林补植不同阔叶树种对土壤碳库的影响,筛选不同类型的阔叶化改造土壤高效固碳模式。【方法】在贵州省独山县国有林场内选择林分结构相似且具有代表性的马尾松Pinus massoniana人工纯林,经择伐后补植香樟Cinnamomum camphora、楠木Phoebe zhennan、南酸枣Choerospondias axillaris、鹅掌楸Liriodendron chinense阔叶树种8~14 a,以未补植阔叶树的马尾松纯林为对照,分别设置3块样地,共15块,采集0~20、20~40和40~60 cm的土壤,测定土壤理化性质和活性有机碳组分。【结果】补植不同阔叶树种对土壤碳库影响不同,对0~20 cm影响较为显著,对更深层土壤影响较小,0~60 cm的土壤碳储量变化范围约1.39~12.77 kg·m-2,其中,马尾松纯林和马尾松+南酸枣林的土壤碳储量较高,分别达到212.35和203.51 kg·m-2,马尾松+香樟林土壤碳储量最低,约为100.78 kg·m-2;补植阔叶树种后土壤pH值显著降低,而MBC显著增加;在0~20 cm土层,南酸枣+马尾松林土壤有机碳和全氮显著提升;补植阔叶树种后短期内土壤碳储量降低,但土壤氮储量无显著变化;补植楠木后土壤碳库活度和碳库活度指数提升,补植南酸枣后土壤碳库稳定性显著提升。【结论】优先选择叶片中初始木质素/氮值高的落叶阔叶树种能有效提升马尾松纯林土壤碳氮固持能力。马尾松纯林阔叶化改造短期内对土壤氮储量影响较小,土壤碳库一定程度下降后,可能需要15 a以上的恢复期。

关键词:马尾松人工纯林;碳氮固存;补植阔叶树;短期效应

中图分类号:S714.2 文献标志码:A 文章编号:1673-923X(2024)10-0126-12

基金项目:贵州省科技计划项目(黔科合服企〔2020〕4010);2023年贵州天然林保护管理补助资金项目“天然林资源保护与修复效益监测”;2023年贵州森林资源管理补助资金项目“贵州人工商品纯林树种结构优化调整对森林碳汇效益提升监测研究”;贵州雷公山森林生态系统国家定位观测研究站项目资助。

The short-term effects of converting pure Pinus massoniana forests into mixed broadleaved forests on soil carbon and nitrogen sequestration

WANG Haodong1,2,3,4, CHEN Meng1,2, YUAN Congjun1,2, HE Shuang1,2, DING Fangjun1,2, YANG Rui4

(1. Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Academy of Forestry, Guiyang 550005, Guizhou, China; 2. Guizhou Leigongshan Observation and Research Station for Forest Ecosystem, Leishan 557100, Guizhou, China; 3. Longli Forestry Farm of Guizhou Prorince, Longli 551200, Guizhou, China; 4. College of Forestry, Guizhou University, Guizhou 550025, Guiyang, China)

Abstract:【Objective】In order to understand the impact of replanting different broad-leaved tree species on soil carbon storage in Pinus massoniana forests, a study was conducted to identify an effective carbon sequestration model for the broadleaf transformation of P. massoniana plantations.【Method】Within the state-owned forest farm in Dushan county, Guizhou province, a representative artificially planted pure forest of P. massoniana with similar forest structure was selected. After selective logging, Cinnamomum camphora, Phoebe zhennan, Choerospondias axillaris, and Liriodendron chinense of broad-leaved tree species were replanted in the same forest plot for 8-14 a. Three plots were designated for each condition, with a total of 15 plots, and soil samples of 0-20, 20-40, and 40-60 cm were collected for determination of soil physiochemical properties and active organic carbon components, using the pure forest of P. massoniana without replanting the broad-leaved trees as the control.【Result】Replanting different broad-leaved tree species had varying effects on soil carbon pools, with significant effects on the 0-20 cm soil layer and smaller effects on deeper soil layers. The range of soil carbon storage changes in the 0-60 cm layer was approximately 1.39-12.77 kg·m-2, with the highest soil carbon storage observed in pure forests of P. massoniana and P. massoniana + C. axillaris, reaching 212.35 and 203.51 kg·m-2, respectively, while the P. massoniana and C. camphora forest had the lowest soil carbon storage, approximately 100.78 kg·m-2. Replanting broad-leaved trees significantly reduced soil pH but increased microbial biomass carbon (MBC). In the 0-20 cm soil layer, the soil organic carbon and total nitrogen significantly increased in the P. massoniana + C. axillaris forest. Although soil carbon storage decreased in the short term after replanting broad-leaved trees, soil nitrogen storage did not significantly change. The replanting of P. zhennan significantly increased soil carbon pool activity and carbon pool activity index, while the replanting of C. axillaris significantly improved soil carbon pool stability.【Conclusion】Prioritizing the selection of deciduous broad-leaved tree species with high initial lignin /N values in the leaf effectively enhanced the soil carbon and nitrogen retention capacity of pure P. massoniana forests. The transformation of pure P. massoniana forests into broad-leaved forests had a minor short-term effect on soil nitrogen storage. After a certain degree of decline in soil carbon stocks, it might require a recovery period of fifteen years or more.

Keywords: Pinus massoniana artificial pure forest; carbon and nitrogen sequestration; replanting broad-leaved trees; short-term effects

近年来,气候变暖已成为人们必须重视的全球性问题[1]。控制大气温室气体二氧化碳浓度最有效的途径是人为减排和森林碳汇。森林固碳可分为地上和地下两部分,地下土壤是陆地生态系统最大的碳库,在全球碳循环中起着至关重要的作用[2-3]。与植物碳库相比,土壤碳库能保存更久[4],对稳定大气二氧化碳浓度至关重要。即使土壤碳库发生微小变化也会引起大气二氧化碳含量的显著变化[5],而气候变暖反过来会加快土壤碳库的分解[6],因此,土壤碳库稳定性备受关注[7]。土壤有机碳主要来源于凋落物和根系分泌物,因而土壤碳库稳定性与地上植被类型密切相关。目前的研究按照周转的快慢、转化控制因素、分组方法的不同等将土壤有机碳分为不同的独立组分,如活性有机碳、慢性有机碳、惰性有机碳、颗粒有机碳、可溶性有机碳、轻组有机碳、重组有机碳、黏粉粒有机碳、团聚体保护有机碳等[8],共同参与土壤腐殖质和团聚体结构的形成、土壤供水供肥过程[9-10]。土壤碳循环与氮存在一定关联,因为在绝大多数生态系统中氮与净初级产量直接关联[11],土壤氮动态对土壤碳固存有较强影响,研究土壤碳库时分析土壤氮固持能力不可或缺[12],二者共同参与地球化学循环,对环境变化响应迅速,备受关注[13]。

针叶林连栽经营常引起土壤肥力下降和土壤酸化等问题[14],为更好地解决这些问题,需采取有目的性的森林经营措施。研究表明,改变森林类型和林分结构等森林经营措施影响土壤固持碳氮的作用[15-16]。通过调整树种结构将针叶林变为针阔混交林,可加快凋落物的分解,也进一步丰富森林物种多样性,有利于土壤碳固存。当前这一结论已得到大量研究的证实[17-19]。但是,林分结构调整后短期内对土壤碳氮固持的影响以及不同针阔混交林土壤碳储量是否存在差异等问题仍不十分清楚,还需要深入探索。

马尾松(Pinus massoniana,PM)作为中国亚热带主要造林树种,在全国人工林中占据重要地位。目前的研究主要集中在马尾松纯林土壤理化性质[20]和碳储量[21]。卢立华等[19]研究发现,与纯林相比,马尾松混交林土壤碳储量显著提升。徐芷君等[22]研究发现,与木荷混交种植的马尾松混交林同样提升了土壤碳氮固持能力。相较于阔叶树种,马尾松针叶木质素和树脂含量高,比叶面积小[23],使得微生物分解速率较慢,分解后产生的酸性成分,抑制微生物的捕食和繁殖等活动[24],导致马尾松针叶分解缓慢。但是,较多研究仅有一种马尾松混交林,关于马尾松与不同阔叶树种混交林的对比研究较少,缺乏足够的对比研究,可能会限制我们对森林生态系统土壤碳氮固持动态变化的认识,还影响森林经营管理决策的科学性。因此,比较研究马尾松阔叶化改造,有利于维持马尾松林生态系统稳定并提高固碳能力。

基于此,本研究在树种结构调整措施的基础上,在马尾松林下补植香樟(Cinnamomum camphora,CC)、楠木(Phoebe zhennan,PZ)、南酸枣(Choerospondias axillaris,CA)和鹅掌楸(Liriodendron chinense,LC)。由于前期对马尾松纯林进行了间伐,导致在试验初期人工林内物种多样性大幅下降,作出以下假设:短期内森林的碳储量无法恢复到最初的状态,且这一过程中不同混交林土壤碳储量差异显著,这通常与生态系统植物多样性和土壤养分有关。本研究通过对比分析不同树种搭配模式下,土壤碳氮固持能力的变化趋势以及差异性,评估短期内马尾松人工林阔叶化改造后土壤碳氮固持效应。研究马尾松纯林阔叶化改造后土壤碳氮固持能力,可为针叶林改造调整提供理论依据,有助于筛选马尾松纯林阔叶化改造土壤高效固碳模式。

1 研究区概况与方法

1.1 研究区概况

研究区位于贵州省黔南布衣族苗族自治州东南部独山县国有林场(图1),独山县位于贵州省,地处贵州最南端,素有“贵州南大门”“西南门户”之称,是“中国花灯艺术之乡”。全县平均海拔850~1 100 m,属中亚热带温润季风性气候,四季分明,冬无严寒、夏无酷暑,年平均气温15 ℃,年均降水量1 430 mm,无霜期297 d。独山县国有林场占地面积约18 588.00 hm2,其中:林地15 839.14 hm2,占总面积的85.21%,非林地2 748.86 hm2,占总面积的 14.79%。森林面积 13 564.32 hm2,森林覆盖率 72.96%,森林总蓄积865 465.48 m3,是贵州最大的国有林场。林场内出露的岩石以砂页岩和碳酸岩为主,土壤以硅铝质和铁铝质黄壤为主,土壤厚度一般在中层以上,肥力中等,多呈酸性或微酸性。林场栽植的树种以马尾松、湿地松Pinus elliottii、香樟和鹅掌楸等为主。

1.2 样地设置与调查

本研究土壤样品采自4种不同的马尾松-阔叶混交林(马尾松+香樟、马尾松+楠木、马尾松+南酸枣和马尾松+鹅掌楸)和未改造的马尾松纯林。选择林分结构相近且具有代表性的马尾松纯林,通过林分结构调整,将其改造成与香樟、楠木、南酸枣和鹅掌楸混交的森林。每种类型设置3块样地,样地面积为667 m2,共15块样地。调查固定样地基本信息(包括海拔、坡度等),对样地内所有胸径大于5 cm的乔木和补植的阔叶树种进行每木检尺,结果如表1所示。在每个样地的三个角分别布设1 m2的草本样方,于草本样方内收集全部的凋落物,称量样方内凋落物的鲜质量,并带回实验室备用。马尾松纯林在文中缩写为PP,马尾松+香樟混交林缩写为PCC,马尾松+楠木混交林缩写为PPZ,马尾松+南酸枣混交林缩写为PCA,马尾松+鹅掌楸混交林缩写为PLC。

1.3 土壤样品采集与指标测定

于2023年5月29日采集土壤样品,每个样地挖开一个土壤剖面,依次从0~20、20~40和40~60 cm采集不同土层的土壤,并用环刀挖取土壤用于测定土壤容重,挖出的土壤去除其中包含的根和石块等杂物,完全风干后,分别研磨过2 mm和0.149 mm筛并装入密封袋中保存备用,用于土壤理化性质的测定,共45个样品。其中,土壤有机碳含量采用重铬酸钾氧化-分光光度法测定,土壤全氮采用凯氏法测定,土壤全磷采用酸溶剂热处理法测定,土壤pH值采用电位法测定[25],易氧化有机碳(ROC)采用高锰酸钾氧化法测定[26],颗粒有机碳(POC)采用湿筛法-重铬酸钾外加热法测定[27],可溶性有机碳(DOC)采用蒸馏水浸提法测定[28],微生物量碳(MBC)采用氯仿熏蒸法测定[29]。凋落物带回后立即放入80 ℃恒温烘箱中烘干,称其干质量,通过计算得到每公顷的凋落物质量。

1.4 统计分析

数据统计与分析在Excel 2016和SPSS 26.0软件中进行,采用单因素方差分析检验马尾松不同改造模式下的差异显著性(P<0.05)。在R 4.1.3中运用“GGally”程序包绘制相关性矩阵图,运用“Vegan”包计算Shannon指数和Rarefied SR指数,RDA分析在Canoco 5.0软件中绘制,其余图片运用Origin 2021软件绘制。

2 结果与分析

2.1 不同改造模式群落植物多样性与凋落物量特征

由表2可知,马尾松+香樟混交林林下植物多样性显著高于马尾松纯林(P<0.05),马尾松纯林和马尾松+鹅掌楸混交林凋落物量显著高于其他处理(P<0.05)。

2.2 不同改造模式土壤理化性质

如表3所示,不同土层马尾松纯林土壤pH值均为最高,且补植阔叶树种土壤pH值与马尾松纯林之间差异显著(P<0.05)。0~20 cm土层中,马尾松+南酸枣林土壤容重显著低于马尾松纯林,马尾松+南酸枣林土壤有机碳含量最高,马尾松+南酸枣林和马尾松+鹅掌楸林土壤全氮显著高于马尾松纯林(P<0.05);而20~40 cm土壤中,仅马尾松+南酸枣林和马尾松+鹅掌楸林土壤有机碳含量差异显著(P<0.05),在40~60 cm土壤中,不同改造模式下土壤有机碳含量均无显著差异(P>0.05)。

2.3 不同改造模式土壤碳氮固存特征

结果表明,土壤碳固存受到不同混交模式的影响,氮固存受到的影响较小(图2)。在0~60 cm土层中,马尾松纯林碳储量最高,且显著高于马尾松+楠木混交林(P<0.05),其次是马尾松+南酸枣混交林,其余处理均较低,马尾松纯林与其余处理无显著差异(P>0.05)。对于0~20 cm土层,除马尾松+南酸枣混交林外,马尾松纯林与其他预处理差异达显著水平(P<0.05)。对于20~40和40~60 cm土层,各处理间差异较小(P>0.05);土壤氮固存在各处理间均无显著差异(P>0.05)。

2.4 不同改造模式土壤碳组分分布特征

结果显示(图3),在0~20、20~40和40~60 cm土层中,马尾松纯林混交林土壤微生物量碳显著低于其余处理(P<0.05),颗粒有机碳在各处理间无显著差异(P>0.05),在0~20和40~60 cm土层中,马尾松+鹅掌楸混交林显著高于马尾松+南酸枣林,在20~40 cm土层,各处理无显著差异(P>0.05),不同混交林的土壤易氧化有机碳仅表层的马尾松+南酸枣混交林和马尾松+香樟混交林差异显著(P<0.05),其余处理差异不显著(P>0.05)。

2.5 不同改造模式土壤碳库管理指数特征

如表4所示,混入阔叶树种后,0~20 cm仅混入楠木的碳库活度和碳库活度指数得到提升,碳库指数仅混入南酸枣后提高,增长了256%,混入阔叶树种后0~40 cm的碳库管理指数只有楠木和南酸枣显著提升(P<0.05),其余指标在更深土层无显著差异(P>0.05)。

2.6 土壤理化性质与土壤碳氮储存的关系

土壤碳氮储量和碳组分相关性分析如图4所示。相关性表现为,碳储量与ROC和POC极显著正相关(P<0.001),POC和ROC存在极显著的两两正相关关系(P<0.001),DOC与MBC显著正相关(P<0.05)。

冗余分析结果(图5)显示,环境因子共解释了土壤碳氮储量变异的93.36%,前两轴分别解释了93.19%和0.17%(图5a)。SOC显著影响土壤氮储量(P<0.01),TN显著影响土壤碳储量(P<0.01),土壤碳、氮储量存在正相关关系,但并未达到显著水平,植物多样性抑制了土壤碳储量的增长,土壤全磷含量和调落物量显著促进了土壤碳氮固存(P<0.05)(图5b)。

3 讨 论

3.1 不同改造模式对土壤碳库垂直分布的影响

植物生长发育受到土壤有机碳的转化与矿质元素释放的影响[30],植物根系活动影响土壤环境[31],二者相互作用、相互影响,共同维持生态系统稳定。由于有机碳的来源和组成以及环境条件的差异,底土中的碳可能比表土中的碳更稳定[32],仅仅关注表层土壤无法揭示整个土壤剖面的土壤碳特征。研究表明,土壤养分含量随土层的深入逐渐减少[33-34]。本研究中,不同混交模式下,土壤SOC、TN和TP随土层的增加逐渐减少,或随土层的增加先增加再减少。造成这一现象的原因可能是由于植物根系主要集中在土壤表层,根系活动改变了土壤结构,改善了土壤环境[35]。同时,土壤容重随土层的增加逐渐变大,深层土壤由于受更强的挤压作用不利于植物根系和土壤微生物的呼吸。加上有机质和地下生物量的减少,导致土壤碳、氮储量和碳组分呈土层加深而递减的趋势[36]。结合本研究结果来看,补植不同树种后土壤碳氮储量随着土层由浅至深的变化趋势不完全一致,暗示了不同种类的阔叶树对土壤碳转化和循环的影响是不同的,这可能与不同植物的根系垂直分布格局和光合产物的分配差异有关[37-38]。本研究仅研究了马尾松纯林阔叶改造后短期内的土壤碳氮储量变化,并未研究植物根系的分布特征以及树种对资源的吸收、利用的能力。未来的研究可以着重于探讨这些因素,并通过综合分析以揭示更深层次的机理。

3.2 不同改造模式对土壤碳氮固持的影响

MBC与整个土壤生态系统养分周转密切相关,其大小主要与土壤微生物的生存环境有关[39]。本研究中,补植阔叶树种使土壤表层MBC得到显著提升,说明补植阔叶树种后微生物的生存环境得到优化。ROC是主要的活性有机碳,反映土壤碳库的活跃度[40]。结果显示,ROC和SOC成显著正相关,表征土壤ROC对土壤碳库变化的强敏感性[41]。研究结果表明,DOC作为土壤最具动态特征的碳组分,与MBC常有较强的相关性[42],这与本研究结果一致,二者对环境和气候变化的敏感性较强,都可以作为评价土壤微生物分解利用土壤速效养分的重要指标。

林分结构调整明显改变森林群落的物种组成和群落结构,植物多样性将受到影响[43]。Shannon指数和Rarefied SR反映的是在相同样本数量或大小的情况下,物种出现的丰富程度,通常与生物量存在正相关关系[44],且对土壤碳固存具有促进作用[18,45]。本研究中,植物多样性抑制了马尾松林和混交林的土壤碳固存,这与前人研究结果不一致[46]。原因可能是前期的森林经营措施大大降低了森林群落总体生物量和物种多样性,短期内难以恢复[47],而马尾松林林分密度的降低将严重影响土壤碳储量[48],导致土壤碳储量甚至低于未开展森林经营的林分。这完全符合前期做出的假设,但这并不意味着采取的森林经营措施是不合适的。从结果中可看出,只有混入香樟的林分土壤碳储量显著低于马尾松纯林,其余林分土壤碳储量与马尾松纯林差异不显著,且年限较久的南酸枣+马尾松林土壤碳储量即将超过马尾松纯林。由表1可知,南酸枣虽年限较长,但其增长速度明显较其他树种更快,即在有限的生长周期内,生长越快的阔叶树种越能提升人工针叶林的土壤碳汇能力,且林分结构调整后可能需要15 a以上才能恢复至原来的状态。香樟生长周期较其他树种慢,相较于同期补植的其他阔叶树种,其体型较小,而南酸枣生长迅速,一方面更多容易分解的凋落物为土壤微生物提供了更多的分解底物[49],另一方面,合理的林分郁闭度避免了太阳长期照射抑制土壤微生物活力[50],这在一定程度上加快了土壤碳固存。郭婧等[51]对比马尾松+石栎针阔混交林、南酸枣落叶阔叶林、石栎+青冈常绿阔叶林3种次生林和杉木人工纯林的凋落物量与周转期,发现次生林的凋落物量显著高于杉木人工林,且落叶树种南酸枣的凋落物分解效率相较于常绿阔叶林更高,周转期更短。说明树种特性所决定的凋落物量及其分解速率影响了森林生态系统的养分循环功能。森林生态系统养分归还的能力与土壤碳氮固持能力密切关联,不同树种搭配不仅增加了森林生态系统物种多样性,提升了林分的稳定性与抗逆能力。从凋落物的分解角度来看,某些凋落物混合分解后通常都能加快分解速率,这些过程可促进土壤对碳和氮的固定[52]。综合来看,补植阔叶树种有利于土壤对碳氮的固持,但树种的配置模式是其中的关键,通常认为选择初始木质素/N值较高的物种分解效率更高[53],选择补植此类树种更契合经营目的的阔叶树种可有效提升马尾松纯林土壤碳固存。陈歆宇等[54]研究发现混交比例和林分密度对马尾松混交林的生产功能有较大的影响。因此,未来需要在确定混交树种后,探究马尾松混交林最佳混交比例和最佳林分密度。

3.3 不同改造模式对土壤碳库管理指数的影响

土壤碳库管理指数可以表征土地利用或管理方式对土壤碳库质量提升的能力[55]。本研究中,对于0~20 cm土层,仅补植楠木的碳库活度和碳库活度指数得到提升,说明马尾松纯林补植阔叶树种初期,补植除楠木外的其余树种均会降低土壤有机碳的分解速率。深层土壤(20~40 cm)的碳库活度和碳库活度指数较接近,可能是由于该区域受植物根系影响较小,土壤环境差异较小[35]。碳库管理指数是土壤碳储量与土壤总碳中不稳定碳活度指标的最终平衡结果,直接反映土壤碳库稳定性。本研究仅碳库活度指数仅0~20 cm土层在补植南酸枣后提高,说明补植南酸枣后土壤质量得到了提升。土壤碳库管理指数可作为评估最佳补阔树种的指标之一。

4 结 论

本研究基于马尾松人工纯林,通过林分结构调整混入不同阔叶树种,以期找出马尾松高效固碳模式。结果显示,补植不同阔叶树种后对马尾松林土壤碳库影响不一致,0~20 cm土壤受影响较强,20~60 cm受到影响较弱;补植阔叶树种后土壤pH值显著降低;对于0~20 cm土壤,南酸枣+马尾松混交林土壤有机碳和全氮显著提升;总体来看,经林分结构调整后的马尾松林分,补植阔叶树种在短期内无法提升土壤碳储量,但未来具有较好的提升潜力;评估补植阔叶树种对土壤碳储量和碳库稳定性的影响,发现南酸枣在目前研究的几个阔叶树种中表现最佳,马尾松阔叶化改造后的土壤碳库可能需要15 a以上的恢复期,在马尾松纯林中补植初始木质素/N值较高的阔叶树种更有利于土壤碳氮的固持。

参考文献:

[1] NOORMETS A, EPRON D, DOMEC J, et al. Effects of forest management on productivity and carbon sequestration: a review and hypothesis[J]. Forest Ecology and Management,2015,355: 124-140.

[2] LEI W Y, PAN Q, TENG P J, et al. How does soil organic matter stabilize with soil and environmental variables along a black soil belt in northeast China? An explanation using FTIR spectroscopy data[J]. Catena,2023,228:107152.

[3] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications,2015,6(1):6707.

[4] RATTAN L. Sequestering carbon and increasing productivity by conservation agriculture[J]. Journal of Soil and Water Conservation,2015,70(3):55A.

[5] ZHOU X H, XU X, ZHOU G Y, et al. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: field incubation and data assimilation[J]. Global Change Biology,2018,24(2):810-822.

[6] YOU M Y, HE P, DAI S S, et al. Priming effect of stable C pool in soil and its temperature sensitivity[J]. Geoderma,2021, 401:115216.

[7] PENG Y Y, THOMAS S C, TIAN D L. Forest management and soil respiration: Implications for carbon sequestration[J]. Environmental Reviews,2008,16:93-111.

[8] 赵鑫,宇万太,李建东.不同经营管理条件下土壤有机碳及其组分研究进展[J].应用生态学报,2006,17(11):2203-2209. ZHAO X, YU W T, LI J D. Research advances in soil organic carbon and its fractions under different management patterns[J]. Chinese Journal of Applied Ecology,2006,17(11):2203-2209.

[9] 张维理, KOLBE H,张认连.土壤有机碳作用及转化机制研究进展[J].中国农业科学,2020,53(2):317-331. ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica,2020,53(2):317-331.

[10] LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology,2020,26(1):261-273.

[11] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology,2008,89(2):371-379.

[12] JELINSKI N A, KUCHARIK C J. Land-use effects on soil carbon and nitrogen on a US Midwestern floodplain[J]. Soil Science Society of America Journal,2009,73(1):217-225.

[13] LAN J C, HU N, FU W L. Soil carbon-nitrogen coupled accumulation following the natural vegetation restoration of abandoned farmlands in a karst rocky desertification region[J]. Ecological Engineering,2020,158:106033.

[14] DONG X D, GAO P, ZHOU R, et al. Changing characteristics and influencing factors of the soil microbial community during litter decomposition in a mixed Quercus acutissima Carruth. and Robinia pseudoacacia L. forest in northern China[J]. Catena, 2021,196:104811.

[15] XIONG Y M, XIA H P, LI Z A, et al. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China[J]. Plant and Soil,2008,304:179-188.

[16] ZHAO J, WANG X L, SHAO Y H, et al. Effects of vegetation removal on soil properties and decomposer organisms[J]. Soil Biology and Biochemistry,2011,43(5):954-960.

[17] BAI Y X, ZHOU Y C, CHEN X L, et al. Tree species composition alters the decomposition of mixed litter and the associated microbial community composition and function in subtropical plantations in China[J]. Forest Ecology and Management,2023, 529:120743.

[18] CHEN X L, TAYLOR A R, REICH P B, et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual[J]. Nature,2023,618:94-101.

[19] 卢立华,郭文福,蔡道雄,等.马尾松与红椎纯林及混交林生态系统碳储量研究[J].中南林业科技大学学报,2019,39(7): 78-84. LU L H, GUO W F, CAI D X, et al. Study on carbon storage of monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix[J]. Journal of Central South University of Forestry Technology,2019,39(7):78-84.

[20] 陈蓉,王韦韦,曹丽荣,等.马尾松和杉木人工林细根碳氮磷化学计量特征随土层深度的变化[J].生态学报,2023,43(9): 3709-3718. CHEN R, WANG W W, CAO L R, et al. Variation of carbon, nitrogen and phosphorus stoichiometric characteristics of fine roots in masson pine and Chinese fir plantations with soil depth[J]. Acta Ecologica Sinica,2023,43(9):3709-3718.

[21] 陶玉华,冯金朝,马麟英,等.广西罗城马尾松、杉木、桉树人工林碳储量及其动态变化[J].生态环境学报,2011,20(11): 1608-1613. TAO Y H, FENG J C, MA L Y, et al. Carbon storage and distribution of massion pine, Chinese fir and eucalyptus plantations at Liuzhou, Guangxi[J]. Ecology and Environmental Sciences,2011,20(11):1608-1613.

[22] 徐芷君,刘苑秋,方向民,等.亚热带2种针叶林土壤碳氮磷储量及化学计量比对混交的响应[J].水土保持学报,2019, 33(1):165-170. XU Z J, LIU W Q, FANG X M, et al. The responses of soil carbon, nitrogen and phosphorus storage and their stoichiometry in two coniferous forests to mixed effect in subtropical area[J]. Journal of Soil and Water Conservation,2019,33(1):165-170.

[23] 刘涛,孙守琴,邱阳.川西亚高山生态系统三种典型植物凋落物分解动态特征[J].山地学报,2017,35(5):663-668. LIU T, SUN S Q, QIU Y. Dynamics and differences in the decomposition of litters from three dominating plants in subalpine ecosystems in western Sichuan, China[J]. Mountain Research, 2017,35(5):663-668.

[24] ZHANG Y, LI X, ZHANG D, et al. Characteristics of fungal community structure during the decomposition of mixed foliage litter from Pinus massoniana and broadleaved tree species in southwestern China[J]. Journal of Plant Ecology,2020,13(5): 574-588.

[25] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000. BAO S D. Soil and agrochemistry analytical methods[M]. Beijing: Chinese Agriculture Press,2000.

[26] LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil,1993,155(1):399-402.

[27] CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic- matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal,1992,56(3):777-783.

[28] 吕国红,周广胜,周莉,等.土壤溶解性有机碳测定方法与应用[J].气象与环境学报,2006,22(2):51-55. LYU G H, ZHOU G S, ZHOU L, et al. Methods of soil dissolved organic carbon measurement and their applications[J]. Journal of Meteorology and Environment,2006,22(2):51-55.

[29] JENKINSON D S, POWLSON D S. The effects of biocidal treatments on metabolism in soil-V: a method for measuring soil biomass[J]. Soil Biology and Biochemistry,1976,8(3):209-213.

[30] ZHANG C, LIU G B, XUE S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the loess plateau[J]. Soil Biology and Biochemistry,2016,97:40-49.

[31] WANG G L, LIU G B, XU M X. Above-and belowground dynamics of plant community succession following abandonment of farmland on the loess plateau, China[J]. Plant and Soil,2009,316: 227-239.

[32] RUMPEL C, K?GEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil,2011,338:143-158.

[33] 孙双红,陈立新,李少博,等.阔叶红松林不同演替阶段土壤酶活性与养分特征及其相关性[J].北京林业大学学报, 2016,38(2):20-28. SUN S H, CHEN L X, LI S B, et al. Characteristics of soil enzyme activity and nutrient content and their correlations at different succession stages of broadleaf-Korean pine forest[J]. Journal of Beijing Forestry University,2016,38(2):20-28.

[34] PAN J W, GUO Q Q, LI H E, et al. Dynamics of soil nutrients, microbial community structure, enzymatic activity, and their relationships along a chronosequence of Pinus massoniana plantations[J]. Forests,2021,12(3):376.

[35] 宋日,吴春胜,郭继勋.东北草原植物残体腐解动态研究(简报)[J].草业学报,2002,11(2):105-108. SONG R, WU C S, GUO J X. Decomposition dynamics of plant residues in natural meadow in northeast China[J]. Acta Prataculturae Sinica,2002,11(2):105-108.

[36] HU P, LIU S, YE Y, et al. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region[J]. Applied Soil Ecology,2018,132:169-178.

[37] 赵巧巧,赵筱青,黄佩,等.云南亚热带地区主要林地类型土壤碳含量变化及影响因素研究[J].林业科学研究,2024,37(1): 63-72. ZHAO Q Q, ZHAO X Q, HUANG P, et al. Soil carbon changes and its influencing factors in major forest types in the subtropical area of Yunnan province[J]. Forest Research,2024,37(1):63-72.

[38] 唐雪娅,徐明,文春玉,等.黔中地区马尾松针阔混交林细根性状空间变异特征[J].中南林业科技大学学报,2023,43(11): 142-150. TANG X Y, XU M, WEN C Y, et al. Spatial variation of root functional traits of Pinus massoniana mixed forest in central Guizhou[J]. Journal of Central South University of Forestry Technology,2023,43(11):142-150.

[39] DEVI N B, YADAVA P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, northeast India[J]. Applied Soil Ecology,2006,31(3):220-227.

[40] 沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):33-39. SHEN H, CAO Z H, HU Z Y. Characteristics and ecological effects of the active organic carbon in soil[J]. Chinese Journal of Ecology,1999,18(3):33-39.

[41] 王义祥,翁伯琦,邢世和,等.果园土壤有机碳及其影响因素的研究进展[J].福建农业学报,2011,26(6):1113-1122. WANG Y X, WENG B Q, XING S H, et al. Advance in soil organic carbon stock and the impact factors on orchard ecosystem research[J]. Fujian Journal of Agricultural Sciences,2011,26(6): 1113-1122.

[42] CRESSEY E L, DUNGAIT J, JONES D L, et al. Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition[J]. Soil Biology and Biochemistry,2018,122:60-70.

[43] 冯广,李俊清,臧润国,等.皆伐与刀耕火种后常绿-落叶阔叶混交林的动态恢复机制[J].北京林业大学学报,2019,41(10): 1-10. FENG G, LI J Q, ZANG R G, et al. Dynamics and mechanisms of natural restoration of evergreen-deciduous broadleaved mixed forest following clear cutting and slash-and-burn[J]. Journal of Beijing Forestry University,2019,41(10):1-10.

[44] 王丽红,辛颖,邹梦玲,等.大兴安岭火烧迹地植被恢复中植物多样性与生物量分配格局[J].北京林业大学学报, 2015,37(12):41-47. WANG L H, XIN Y, ZOU M L, et al. Plants diversity and biomass distribution of vegetation restoration in burned area of Great Xing’an mountains[J]. Journal of Beijing Forestry University,2015,37(12):41-47.

[45] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communications,2015,6(1):6707.

[46] CONG W F, VAN RUIJVEN J, MOMMER L, et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes[J]. Journal of Ecology,2014,102(5):1163-1170.

[47] 范春楠,刘强,郑金萍,等.采伐强度对阔叶红松林生态系统碳密度恢复的影响[J].北京林业大学学报,2022,44(10):33-42. FAN C N, LIU Q, ZHENG J P, et al. Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem[J]. Journal of Beijing Forestry University,2022, 44(10):33-42.

[48] 李玉凤,李妹珍,马姜明,等.林分密度对马尾松人工林土壤碳储量及其分配特征的影响[J].广西林业科学,2021,50(1): 54-59. LI Y F, LI M Z, MA J P, et al. Effects of stand density on soil carbon storage and distribution characteristics of Pinus massoniana plantations[J]. Guangxi Forestry Science,2021,50(1): 54-59.

[49] BALAMI S, VA?UTOVá M, KO?NAR J, et al. Soil fungal communities in abandoned agricultural land has not yet moved towards the seminatural forest[J]. Forest Ecology and Management,2021,491:119181.

[50] LEI W, PAN Q, TENG P, et al. How does soil organic matter stabilize with soil and environmental variables along a black soil belt in northeast China? An explanation using FTIR spectroscopy data[J]. Catena,2023,228:107152.

[51] 郭婧,喻林华,方晰,等.中亚热带4种森林凋落物量、组成、动态及其周转期[J].生态学报,2015,35(14):4668-4677. GUO J, YU L H, FANG X, et al. Litter production and turnover in four types of subtropical forests in China[J]. Acta Ecologica Sinica, 2015,35(14):4668-4677.

[52] ZHAO H, YANG R, YUAN C, et al. Chemical stoichiometry and enzyme activity changes during mixed decomposition of Camellia sinensis pruning residues and companion tree species litter[J]. Agronomy,2023,13(7):1717.

[53] 刘莎茜,杨瑞,侯春兰,等.贵州山区生态茶园不同凋落物木质素、纤维素分解特征[J].茶叶科学,2021,41(5):654-668. LIU S Q, YANG R, HOU C L, et al. Decomposition characteristics of lignin and cellulose in different litters of ecological tea gardens in mountainous areas of Guizhou[J]. Journal of Tea Science,2021,41(5):654-668.

[54] 陈歆宇,谭伟,杨深钧,等.不同类型马尾松混交林结构与生产功能的耦合关系[J].中南林业科技大学学报,2023,43(4): 53-61. CHEN X Y, TAN W, YANG S J, et al. The coupling relationship between structure and production function of different types of Pinus massoniana mixed forest[J]. Journal of Central South University of Forestry Technology,2023,43(4):53-61.

[55] MEENA V S, MONDAL T, PANDEY B M, et al. Land use changes: strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India[J]. Geoderma, 2018,321:69-78.

[本文编校:吴 彬]