摘 要:【目的】探究不同水生植物对农田退水氮磷污染物的去除效果,为利用水生植物修复和防治水体污染提供科学依据。【方法】采用水培试验测定12种水生植物茎叶和根的生物量、氮磷含量、氮磷吸收量以及对水体氮磷的去除率,运用筛选指标的平均隶属函数值对12种水生植物去除氮磷能力进行聚类分析。【结果】挺水植物中,水葱、芦苇、香蒲净增生物量较高;芦苇氮吸收量最高达到201.22 mg·m-2,香蒲磷吸收量最高达到26.64 mg·m-2;芦苇对氨氮、硝氮、总氮、总磷去除率最高,分别达到98.56%、78.93%、80.22%、81.36%。浮水植物中,凤眼莲净增生物量最高;凤眼莲氮吸收量最高达到156.14 mg·m-2,睡莲磷吸收量最高达到23.48 mg·m-2;凤眼莲对氨氮、硝氮、总氮、总磷去除率最高,分别达到95.63%、76.01%、71.66%、80.58%。沉水植物中,狐尾藻净增生物量最高;狐尾藻氮吸收量最高达到230.75 mg·m-2,苦草磷吸收量最高达到26.11 mg·m-2;狐尾藻对氨氮、总氮去除率最高,分别达到97.94%、84.93%;苦草对硝氮、总磷去除率最高,分别达到76.32%、79.09%。芦苇、水葱、睡莲主要通过根吸收累积氮磷,其他9种水生植物主要通过茎叶吸收氮磷从而增加生物量去除水体氮磷。水体氮磷去除率与植物氮磷吸收量呈极显著正相关。芦苇、香蒲、狐尾藻为高效净化植物,苦草、水葱、凤眼莲、睡莲、千屈菜为较高效净化植物。【结论】挺水植物芦苇、香蒲、水葱、千屈菜,浮水植物睡莲和沉水植物狐尾藻、苦草对宁夏引黄灌区农田退水氮磷污染物去除效果较好。
关键词:挺水植物;浮水植物;沉水植物;农田退水;去除率;引黄灌区
中图分类号:S719 文献标志码:A 文章编号:1673-923X(2024)10-0105-11
基金项目:宁夏回族自治区重点研发计划项目(2022BEG02007);宁夏自然科学基金项目(2022AAC03447);农业高质量发展和生态保护科技创新示范课题(NGSB-2021-11)。
The removal effect of 12 aquatic plants on nitrogen and phosphorus in the return flow of farmland
HONG Yu1,2, HE Ziqi1, FANG Xi1, LIU Ruliang2
(1. College of Life and Environmental Sciences, Central South University of Forestry Technology, Changsha 410004, Hunan, China; 2. Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, Ningxia, China)
Abstract:【Objective】Exploring the removal effects of nitrogen and phosphorus in the return flow of farmland by different aquatic plants, providing scientific basis for the use of aquatic plants in the remediation and prevention of water pollution.【Method】Using hydroponic experiments to determine the changes of biomass, content and absorption of nitrogen and phosphorus in roots, stems and leaves of 12 aquatic plants, as well as removal rate of nitrogen and phosphorus in water. Cluster analysis was conducted on the nitrogen and phosphorus removal ability of 12 aquatic plants using the average membership function values of screening indicators.【Result】Among the emergent plants, the net increase biomasses of Scirpusvalidus, Phragmitesaustralis and Typhaorientalis were higher. Phragmitesaustralis had the highest nitrogen absorption, reaching 201.22 mg·m-2, and Typhaorientalis had the highest phosphorus absorption, reaching 26.64 mg·m-2. Phragmitesaustralis had the highest removal rates for ammonia nitrogen, nitrate nitrogen, total nitrogen, and total phosphorus, reaching 98.56%, 78.93%, 80.22%, and 81.36%, respectively. Among floating plants, the net increase biomass of Eichhorniacrassipes was the highest. Eichhorniacrassipes had the highest nitrogen absorption, reaching 156.14 mg·m-2, and Nymphaea tetragona had the highest phosphorus absorption, reaching 23.48 mg·m-2. Eichhorniacrassipes had the highest removal rates for ammonia nitrogen, nitrate nitrogen, total nitrogen, and total phosphorus, reaching 95.63%, 76.01%, 71.66%, and 80.58%, respectively.Among submerged plants, the net increase biomass of Myriophyllumverticillatum was the highest. Myriophyllumverticillatum had the highest nitrogen absorption, reaching 230.75 mg·m-2, and Vallisnerianatans had the highest phosphorus absorption, reaching 26.11 mg·m-2. Myriophyllumverticillatum had the highest removal rate of ammonia nitrogen and total nitrogen, reaching 97.94% and 84.93%, respectively; and Vallisnerianatans had the highest removal rates of nitrate nitrogen and total phosphorus, reaching 76.32% and 79.09%, respectively. Phragmitesaustralis, Scirpusvalidus and Nymphaea tetragona mainly absorbed nitrogen and phosphorus through their roots, while the other 9 aquatic plants mainly absorbed nitrogen and phosphorus through their stems and leaves, thereby increasing biomass and removing nitrogen and phosphorus from the water. The removal rate of nitrogen and phosphorus in water was significantly positively correlated with the absorbed quantities of nitrogen and phosphorus by plants. Phragmitesaustralis, Typhaorientalis and Myriophyllumverticillatum were highly efficient purification plants, while Vallisnerianatans, Scirpusvalidus, Eichhorniacrassipes, Nymphaea tetragona, and Lythrumsalicaria were relatively efficient purification plants.【Conclusion】In Ningxia Yellow River irrigation region, the emergent plants such as Phragmitesaustralis, Typhaorientalis, Scirpusvalidus, and Lythrumsalicaria, as well as the floating plants such as Nymphaea tetragona, and the submerged plants such as Myriophyllumverticillatum and Vallisnerianatans, had a good removal effect on nitrogen and phosphorus.
Keywords: emergent plants; floating plants; submerged plants; return flow of farmland; removal rate; Yellow River irrigation region
宁夏引黄灌区是我国西北地区重要的灌溉农区和商品粮基地,由于独特的灌排制度,每年从黄河引水量约70×108 m3,退水量约30×108 m3,其中40%通过排水沟退回黄河。农业生产过程中,农户个体经营方式较为普遍,长期存在化肥过量施用和大水漫灌现象,导致大量的氮磷随农田退水进入各级排水沟,导致地表水水质恶化[1-2],对黄河水质安全造成了严重威胁。以农田排水沟为核心的灌区水系污染正演变为影响黄河水质的主要污染源[3-4]。农田退水氮磷高污染负荷,无序不稳定性,潜伏周期长,是农业面源污染的主要贡献者,已经成为灌区排水沟氮磷污染和水环境富营养化的主要来源[5-6]。通过水生植物修复技术去除农田排水沟中过量氮、磷污染物成为灌区水体保持良好水质的关键[7-8]。
利用水生植物(挺水植物、浮水植物和沉水植物)的吸收、吸附及其根系微生物降解等途径去除水体氮磷污染物[9],抑制沉积物营养物质的释放[10],通过植物生命活动改变根围的水体微环境,影响微生物转化和去除污染物的过程[11],以及通过对氮、磷等营养物质的竞争作用,抑制藻类繁殖,改善水体环境[12],是一种投资低、耗能低、无二次污染的修复技术。有研究表明,无锡市农田退水净污湿地中,挺水植物去除退水氮磷的能力较强[13]。沉水植物苦草型净化系统对农田退水除磷效率较高 [14]。与单一、自然植被相比,多种人工植被对长江流域农田生态排水沟渠TN削减效果最好,平均削减率为47.72%[15]。但是关于挺水、浮水和沉水植物对宁夏引黄灌区农田退水氮磷的去除能力的研究仍少见报道。宁夏引黄灌区属于中温带干旱区,水生植物的生态学特性、生长规律及养分吸收机制均有其特殊性,筛选适宜的水生植物修复宁夏引黄灌区农田退水氮磷污染成为重要的环节。本研究开展水培试验,比较研究宁夏引黄灌区农田排水沟常见的12种水生植物对农田退水氮磷的去除效果及其作用机制,运用聚类分析筛选去除氮磷能力强的水生植物,为西北地区农业面源污染水生植物修复提供科学依据。
1 材料与方法
1.1 研究区概况
研究区位于宁夏回族自治区银川市贺兰县常信乡(106°21′26″E,38°37′32″N),属于典型中温带大陆性干旱气候,年均降水量138.8 mm,平均温度9.7 ℃,全年无霜期165 d,积温3 280 ℃。年均日照为2 935.5 h,全年太阳辐射总量为140.9 kcal·cm-2。
1.2 供试植物的来源
根据课题组前期试验结果,综合考虑植物成活率、生态型与净化效果,选择宁夏引黄灌区常见的6种挺水植物:香蒲Typha orientalis、菖蒲Acorus calamus、千屈菜Lythrum salicaria、芦苇Phragmites australis、水葱Scirpus validus、慈姑Sagittaria trifolia,3种浮水植物:睡莲Nymphaea tetragona、凤眼莲Eichhornia crassipes、浮萍Lemna minor和3种沉水植物:狐尾藻Myriophyllum verticillatum、伊乐藻Elodea nuttallii、苦草Vallisneria natans的幼苗移栽在农田退水排水沟,生长2个月,作为水培试验材料。
1.3 试验设计
选取性状相同、生长状况良好的植株,种植在48 cm×35 cm×25 cm白色透明塑料箱中,箱底铺上5 cm厚的用蒸馏水清洗过的石英砂,自然光照。试验用水取自贺兰县常信乡稻田排水沟的农田退水,原水中TN 2.83±0.06 mg·L-1,NH4+-N 0.91±0.05 mg·L-1,NO3--N 1.76±0.14 mg·L-1,TP 0.41±0.06 mg·L-1,通过添加NH4Cl、KNO3和KH2PO4试剂,参照地表水环境质量标准(GB 3838—2002),配制成NH4+-N、NO3--N和TP为5.0、10.0和1.8 mg·L-1的劣Ⅴ类水,每个处理18 L试验用水,空白处理只放置石英砂,每个处理3个重复。以植物移植的当天为第1次取水样时间,以后每隔4 d取水样1次,每次取水样50 mL,持续时间28 d,取水样8次,测定NH4+、NO3--N、TN和TP浓度;测定水培试验前和水培试验结束后植株的生物量及植物根茎叶TN和TP含量。水培试验前12种植物茎叶和根TN、TP含量如图1所示。
1.4 样品处理与测定方法
水培试验开始前与结束后,将植株从溶液中取出,用蒸馏水冲洗植物样品的残留物,置于阴凉处晾干表面水分,分别称量各种植物茎叶和根的鲜质量后,在70℃恒温下烘干至恒质量,称取每个样品的烘干质量,用研磨机磨碎各烘干植物样品,过0.25 mm孔径筛,用自封袋密闭保存备用。
植物样品经浓硫酸和过氧化氢消解后,采用凯氏定氮仪法测定TN含量,采用钼锑抗吸光光度法测定TP含量。采用连续流动分析仪(FUTURA,法国Alliance)测定水样NH4+-N、NO3--N浓度,采用钼锑抗分光光度法测定水样H2PO4-浓度,采用碱性过硫酸钾消解紫外分光光度法测定水样TN浓度,采用钼酸铵分光光度法测定水样TP浓度。
1.5 数据统计分析
采用SPSS 26.0软件的Duncan新复极差法进行多重比较。
2 结果与分析
2.1 不同水生植物体内氮磷含量及分布
从表1可以看出,水葱、芦苇净增生物量显著高于其他植物(P<0.05)。挺水植物中,水葱净增生物量最高(105.50 g·m-2),其次是芦苇、香蒲;芦苇茎叶净增量最大,水葱根净增量最大。浮水植物中,凤眼莲净增生物量最高(42.72 g·m-2),其茎叶净增量最大;睡莲根净增量最大。沉水植物中,狐尾藻净增生物量最高(61.24 g·m-2),茎叶、根净增量最大。芦苇、水葱、睡莲、伊乐藻的根净增量均高于茎叶,其他水生植物的茎叶净增量均高于根。
从图2可以看出,在试验结束时,挺水植物中,千屈菜茎叶TN含量最高(4.04 g·kg-1),慈姑根最高(2.87 g·kg-1);浮水植物中,凤眼莲茎叶TN含量最高(3.98 g·kg-1),睡莲根最高(1.56 g·kg-1);沉水植物中,苦草茎叶TN含量最高(2.73 g·kg-1),伊乐藻根最高(2.77 g·kg-1)。挺水植物中,慈姑茎叶、根TP含量最高,分别为0.73、0.60 g·kg-1;浮水植物中,浮萍植株TP含量最高(0.58 g·kg-1),睡莲根TP含量最高(0.47 g·kg-1);沉水植物中,伊乐藻茎叶TP含量最高(0.51 g·kg-1),苦草根最高(0.50 g·kg-1)。此外,芦苇、狐尾藻、伊乐藻根TN含量高于茎叶,而其他水生植物则为茎叶高于根;睡莲、芦苇、香蒲、狐尾藻根TP含量高于茎叶,而其他水生植物则为茎叶高于根。
2.2 不同水生植物的氮磷吸收量
从表2可以看出,狐尾藻、芦苇的N吸收量与其他植物差异显著(P<0.05),香蒲、苦草、伊乐藻的P吸收量与其他植物差异显著(P<0.05)。挺水植物中,芦苇N吸收量最高(201.22 mg·m-2),其次为香蒲、水葱;香蒲P吸收量最高(26.64 mg·m-2),其次为慈姑、芦苇。浮水植物中,凤眼莲N吸收量最高(156.14 mg·m-2),睡莲P吸收量最高(23.48 mg·m-2);沉水植物中,狐尾藻N吸收量最高(230.75 mg·m-2),苦草P吸收量最高(26.11 mg·m-2)。芦苇、水葱、睡莲根部的N、P吸收量均高于茎叶部,而其他水生植物茎叶部的N、P吸收量均高于根部。表明植物氮磷累积量的差异主要来源于生物量的差异,也表明芦苇、水葱、睡莲主要通过根部累积氮磷,其他水生植物的生长中心是茎叶部,从茎叶部获得的氮磷量高于根部。
2.3 不同水生植物对水体氮磷污染物的去除效果
从图3可以看出,不同水生植物的氮磷去除率与CK之间表现显著性差异(P<0.05)。氨氮去除率:挺水植物中芦苇最高,达到98.56%,其次为千屈菜、香蒲;浮水植物中凤眼莲最高,达到95.63%;沉水植物中狐尾藻最高,达到97.94%。硝氮去除率:挺水植物中芦苇最高,达到78.93%,其次为水葱、香蒲;浮水植物中凤眼莲最高,达到76.01%;沉水植物中苦草最高,达到76.32%。总氮去除率:挺水植物中芦苇最高,达到80.22%,其次为香蒲、水葱;浮水植物中凤眼莲最高,达到71.66%;沉水植物中狐尾藻最高,达到84.93%。总磷去除率:挺水植物中香蒲最高,达到81.36%,其次为水葱、芦苇;浮水植物中凤眼莲最高,达到80.58%;沉水植物中苦草最高,达到79.09%。
2.4 不同水生植物去除效果的相关因素与综合评价
由表3可以看出,氨氮去除率与总氮去除率、全株氮吸收量呈极显著正相关(P<0.01);硝氮去除率与净增生物量呈显著正相关(P<0.05);总氮去除率与全株氮吸收量呈极显著正相关(P<0.01);总磷去除率与全株磷吸收量呈极显著正相关(P<0.01)。
采用数学分析法-隶属度函数法分别计算不同水生植物中总氮、总磷、氨氮、硝氮的去除率的具体隶属度值,并将各植物、各指标的去除率隶属值进行累加,综合分析不同水生植物对水体氮磷的去除效果差异,由图4可以看出,挺水植物中芦苇、香蒲、水葱去除效果较强,浮水植物中凤眼莲、睡莲去除效果较强,沉水植物中狐尾藻、苦草去除效果较强。同时将水生植物去除效果强弱采用组间连接方法进行系统聚类分析,芦苇、香蒲、狐尾藻为高效净化植物,苦草、水葱、凤眼莲、睡莲、千屈菜为较高效净化植物,伊乐藻、浮萍、菖蒲、慈姑为普通净化植物。
3 讨 论
3.1 不同挺水植物对模拟农田退水氮磷的去除效果
挺水植物根在泥质中生长,茎下部和基部在水中,茎、叶光合部分露出水面[19],因此挺水植物茎叶储存更多N、P满足光合作用的需要[20]。尽管根吸收P最多,但受生物量的影响,各植株P储量仍以地上部分居多[21]。收获挺水植物的地上部分,可以达到去除水体氮磷的目的。
研究表明,挺水植物芦苇、水葱等对生活污水[21]、煤矿废水[22]、茅洲河中游污染水体[23]的总氮、总磷去除效果较好,与本研究的结果基本一致。本研究中,挺水植物对农田退水的氨氮去除率达92.57%,对硝氮去除率达72.44%;总氮去除率达55.39%;总磷去除率达61.08%,其中芦苇、香蒲、水葱和千屈菜去除氮磷效果较为明显。有研究表明挺水植物根系分泌物浓度高、泌氧能力强,芦苇[24]、香蒲[25]、水葱[26]和千屈菜[27]通过改变根际相关微生物的丰度与群落结构,促进了微生物硝化和反硝化作用,介导有机物降解并对植物吸收起到调控作用[28]。而且芦苇、水葱的根部氮磷吸收量高于茎叶部,香蒲、千屈菜的茎叶部氮磷吸收量高于根部,说明芦苇、水葱主要依靠根部去除氮磷,而香蒲、千屈菜主要依靠茎叶部。
3.2 不同浮水植物对模拟农田退水氮磷的去除效果
浮水植物是指根部生长于底泥中,茎部在水中,而叶片漂浮在水面或者根茎叶植物体完全漂浮在水面,只有漂浮在水面上的植物器官具有光合作用,是去除水体氮磷能力较强的水生植物类型[29]。浮水植物去除水体N的途径主要是植物吸收[30],另外微生物降解和底泥的吸附与截留同样发挥着重要作用[29];去除水体P的途径主要包括植物吸收、根系吸附以及物理沉淀[31]。
研究表明,浮水植物在妫水河污染水体中NH4+-N、TP的去除效果较好,其中植物磷吸收贡献率较高,植物吸收对TP的去除起到关键作用[32]。凤眼莲对再生水氮磷去除率较高,主要由于其生物量大,增殖迅速,去除效果能够持续[33]。本研究也证实了这一结果,但是凤眼莲是外来物种,具有入侵性,易引发次生环境问题[34]。本研究发现,睡莲和浮萍对农田退水的氨氮、硝氮、总氮、总磷去除率仅略低于凤眼莲,因此可采用睡莲和浮萍代替凤眼莲净化宁夏农田退水氮磷污染。睡莲的根部氮磷吸收量高于茎叶部,而凤眼莲的茎叶部氮磷吸收量高于根部,说明睡莲主要依靠根部去除氮磷,而凤眼莲主要依靠茎叶部。在宁夏引黄灌区,浮水植物睡莲对农田退水氮磷去除效果较好。
3.3 不同沉水植物对模拟农田退水氮磷的去除效果
沉水植物体整株沉没于水层下面,茎、叶和根均具有吸收作用,将氮磷物质同化成生长所需的蛋白质和核酸等结构组成物质[35]。沉水植物可以通过生长繁殖吸收、促进微生物代谢分解、改善沉积物理环境、抑制沉积物再悬浮等多种途径降低沉积物中N、P含量或抑制N、P释放通量,从而有效控制水体内源负荷[36]。在一定范围内,沉水植物的生物量越大,对水体中氮磷物质的去除效果越好[37],沉水植物对NH4+-N的吸收能力显著强于其对NO3--N的吸收能力[38],当上覆水中磷浓度较高时,沉水植物主要通过叶片吸收作用满足植物生长对磷的需求[39]。
研究表明,狐尾藻对模拟污染水体的总磷、氨氮去除效果显著[40],对污染湖水磷吸收量较高,主要为根系吸收作用[41]。狐尾藻和苦草对富营养化水体的TN、TP去除率较高[42],与本研究的结果基本一致。本研究中,沉水植物对农田退水的氨氮去除率达96.67%,对硝氮去除率达69.72%,总氮去除率达66.21%,总磷去除率达77.42%。沉水植物狐尾藻、苦草的茎叶部氮磷吸收量高于根部,说明它们均主要依靠茎叶部去除氮磷。在宁夏引黄灌区,沉水植物狐尾藻和苦草对农田退水水体氮磷去除效果较好。
3.4 不同水生植物去除效果的相关因子与综合评价
植物能吸收水体氮磷,并通过生物量不断增加、积累氮磷,因此可以通过收割植物的茎、叶和根达到去除水体氮磷污染物的目的,植物茎叶部氮磷含量越高越有利于去除氮磷[43]。浮水植物对富营养化水体的磷去除量与植物磷积累量呈显著正相关[44]。沉水植物对氮磷的去除效果主要受植物生物量大小的影响,二者呈显著正相关[45]。本研究也发现,水体中的氨氮、总氮去除率和总磷去除率分别与植物氮吸收量、磷吸收量呈极显著正相关关系(P<0.01);硝氮去除率与植物净增生物量呈显著正相关(P<0.05)。
彭蕾等[46]和张倩妮等[18]针对生活污水不同污染物指标的平均隶属函数值对不同水生植物进行聚类分析,后者运用氨氮、总磷、化学需氧量、悬浮固体的平均隶属函数值分析表明,高净化能力植物为芦苇、凤眼莲、香蒲;中等净化能力植物为睡莲、伊乐藻、水葱、苦草、菖蒲、千屈菜、狐尾藻。本研究中,芦苇、香蒲、狐尾藻为高效净化植物,苦草、水葱、凤眼莲、睡莲、千屈菜为较高效净化植物。由于本研究运用了总氮、总磷、氨氮、硝氮的平均隶属函数值,因此聚类分析结果与张倩妮等[18]的研究结果有所不同;而且生活污水和农田退水污染物种类、来源不同,因此水生植物净化能力表现不同。
由于单一植物存在抗逆性差、净化能力有限等问题,而不同生态型水生植物组合具有更高的生物量和氮磷累积效应,对水体氮磷具有更强的吸收净化作用[47-48]。而光照是决定沉水植物生长发育的主要限制因素[49],浮水植物会对沉水植物的生长空间形成较大影响[50]。因此根据本研究的结果,可采用净化效果较好的挺水植物(芦苇、香蒲、水葱、千屈菜)与浮水植物(睡莲)/沉水植物(狐尾藻、苦草)组配。在下一步研究中,将注重从营养盐去除能力、空间组合和景观效果等方面[51]对不同生态型水生植物进行优化配置,开展净化效果与机理研究。
4 结 论
挺水植物芦苇、香蒲氮磷去除率较高,浮水植物凤眼莲氮磷去除率较高,沉水植物狐尾藻、苦草氮磷去除率较高。芦苇、水葱和睡莲主要通过根吸收积累水体氮磷,而其他水生植物主要通过茎、叶吸收氮磷从而增加生物量去除水体氮磷。水生植物氮磷吸收量越高,对水体氮磷去除能力越强。针对宁夏引黄灌区农田退水氮磷污染物,芦苇、香蒲和狐尾藻为高效净化植物,苦草、水葱、睡莲和千屈菜为较高效净化植物。
参考文献:
[1] YAN L, LYU Y L, FEN Q, et al. Total nitrogen and total phosphorus pollution reshaped the relationship between water supply and demand in the Huaihe River watershed, China[J]. Chinese Geographical Science,2023,33(3):512-530.
[2] SRINIVAS R, SINGH A P, DHADSE K, et al. An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem[J]. Journal of Cleaner Production,2020,246:118963.
[3] XUE L, DUAN J, HOU P, et al. Full time-space governance strategy and technology for cropland non-point pollution control in China[J]. Frontiers of Agricultural Science and Engineering, 2023,10(4):593-606.
[4] 陆红飞,齐学斌,乔冬梅,等.基于文献计量的黄河流域农田灌排研究现状[J].灌溉排水学报,2020,39(10):25-34. LU H F, QI X B, QIAO D M, et al. Using bibliometrics to analyze research on irrigation and drainage in the yellow river basin[J]. Journal of Irrigation and Drainage,2020,39(10):25-34.
[5] 路鑫雨,徐惠风,文波龙,等.湿地植物对农田退水的生理生态响应[J/OL].分子植物育种,http://kns.cnki.net/kcms/ detail/46.1068.S.20230704. 1102.005.html. LU X Y, XU H F, WEN B L, et al. Physiological and ecological response of wetland plants to receding farmland water[J/OL]. Molecular Plant Breeding,http://kns.cnki.net/kcms/detail/ 46.1068.S.20230704.1102.005.html.
[6] 朱金格,张晓姣,刘鑫,等.生态沟-湿地系统对农田排水氮磷的去除效应[J]. 农业环境科学学报,2019,38(2):405-411. ZHU J G, ZHANG X J, LIU X, et al. Removal of nitrogen and phosphorus from farmland drainage by ecological ditch-wetland system[J]. Journal of Agro-Environment Science,2019,38(2): 405-411.
[7] NSENGA M K, BO Z, KAVIDIA D M. Assessing the influence of different plant species in drainage ditches on mitigation of non-point source pollutants (N, P, and sediments) in the Purple Sichuan basin[J]. Environmental Monitoring and Assessment, 2017,189(6):267.
[8] 程浩淼,季书,葛恒军,等.生态沟渠对农田面源污染的消减机理及其影响因子分析 [J].农业工程学报,2022,38(21):42-52. CHENG H M, JI S, GE H J, et al. Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(21):42-52.
[9] SUPREETH M. Enhanced remediation of pollutants by microorganisms-plant combination[J]. International Journal of Environmental Science and Technology,2021,19(5):1-12.
[10] GERM M, SIM?I? T. Vitality of aquatic plants and microbial activity of sediment in an oligotrophic lake (Lake Bohinj, Slovenia)[J]. Journal of Limnology,2011,70(2):305-312.
[11] YANG J, PEI H G, LYU J P, et al. Effects of phytoplankton community and interaction between environmental variables on nitrogen uptake and transformations in an urban river[J]. Journal of Oceanology and Limnology,2022,40(3):1012-1026.
[12] LI Y, MA Y, WANG H, et al. Do alternative stable states exist in large shallow Taihu Lake, China?[J]. Journal of Oceanology and Limnology,2023,41(3):959-971.
[13] 王沛芳,娄明月,钱进,等.农田退水净污湿地对污染物的净化效果及机理分析[J].水资源保护,2020,36(5):1-10. WANG P F, LOU M Y, QIAN J, et al. Analysis of purification effect and mechanism of pollutant by the farmland drainage wetland[J]. Water Resources Protection,2020,36(5):1-10.
[14] 龚苗苗,蔡飞翔,姜培坤,等.沉水植物型生态净化系统处理农田退水的总磷去除动力学研究[J].浙江农林大学学报, 2022,39(1):136-145. GONG M M, CAI F X, JIANG P K, et al. Kinetic modeling of total phosphorus removal from farmland drainage with submerged macrophyte-type ecological purification system[J]. Journal of Zhejiang A F University,2022,39(1):136-145.
[15] 秦沂樟,白静,赵健,等.长江流域农田生态排水沟渠氮削减效应研究[J/OL].农业环境科学学报,http://kns.cnki.net/kcms/ detail/12.1347.S.20231225.1755.011.html. QIN Y Z, BAI J, ZHAO J, et al. Nitrogen removal effect of agricultural ecological drainage ditches in the Yangtze River basin, China[J]. Journal of Agro-Environment Science, http://kns. cnki.net/kcms/detail/12.1347.S.20231225.1755.011.html.
[16] 吴建强,王敏,吴健,等.4种浮床植物吸收水体氮磷能力实验研究[J].环境科学,2011,32(4):995-999. WU J Q, WANG M, WU J, et al. Study on the nitrogen and phosphorus uptake ability of four plants cultivated on floatingbed[J]. Environmental Science,2011,32(4):995-999.
[17] ZHANG X B, LIU P, YANG Y S, et al. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes[J]. Journal of Environmental Sciences,2007,19(8):902-909.
[18] 张倩妮,陈永华,杨皓然,等.29种水生植物对农村生活污水净化能力研究[J].农业资源与环境学报,2019,36(3):392-402. ZHANG Q N, CHEN Y H, YANG H R, et al. Study on the purification ability of 29 aquatic plants to rural domestic sewage[J]. Journal of Agricultural Resources and Environment, 2019,36(3):392-402.
[19] WETZEL R G. Structure and productivity of aquatic ecosystems. Limnology[M]. New York: Saunders College Publishing,1983.
[20] 汪昆仑.挺水植物对大石河下游水体的净化及吸收动力学实验研究[D]. 北京:北京市环境保护科学研究院,2021. WANG K L. Experimental study on purification and absorption kinetics of emergent plants in lower Dashi river[D]. Beijing: Beijing Academy of Environmental Protection Sciences,2021.
[21] 庞庆庄,郭建超,魏超,等.4种湿地植物对污水中氮磷的去除效能及其迁移规律[J].西北林学院学报,2019,34(6):68-73. PANG Q Z, GUO J C, WEI C, et al. Migration regularity and removal efficiency of nitrogen and phosphorus by four different wetland plants[J]. Journal of Northwest Forestry University, 2019,34(6):68-73.
[22] 程丽芬,张欣.5种水生植物对煤矿废水的适应性及净化效果[J].浙江农林大学学报,2019,36(4):801-809. CHENG L F, ZHANG X. Adaptability and purification effect on coal mine wastewater with five aquatic plants[J]. Journal of Zhejiang A F University,2019,36(4):801-809.
[23] 李斌,李慧,吴基昌,等.12种水生植物对茅洲河污染水体的净化研究[J].环境科学与技术,2020,43(增刊1):151-158. LI B, LI H, WU J C, et al. Purification ability of 12 aquatic macrophytes to polluted water in the Maozhou River[J]. Environmental Science Technology,2020,43(Suppl.1):151-158.
[24] FANG J, ZHAO R, CAO Q, et al. Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in northern China[J]. Plant and Soil,2019,443(1-2):473-492.
[25] 张義.香蒲和芦苇垂直潜流人工湿地对再生水中氮的去除效果及影响机制[D].北京:中国林业科学研究院,2021. ZHANG Y. Wetland treating reclaimed water nitrogen removal effect and influencing mechanism for cattail and reed vertical subsurface flow constructed[D]. Beijing: Chinese Academy of Forestry,2021.
[26] 蒋旭瑶,吉喜燕,黄德英,等.不同植物类型复合垂直流人工湿地根系微生物群落结构的研究[J].农业环境科学学报, 2019,38(1):176-183. JIANG X Y, JI X Y, HUANG D Y, et al. Microbial community structure in the roots of three kinds of plants in integrated vertical flow constructed wetlands[J]. Journal of Agro-Environment Science,2019,38(1):176-183.
[27] 赵卉琳.耐盐挺水植物去除氮磷的机制及根际氨氧化菌群特征分析[D].天津:天津大学,2014. ZHAO H L. Removal mechanism of nitrogen and phosphorus by salt-tolerant emergent macrophyte and the community characteristics of rhizosphere ammonia-oxidizing microorganisms[D]. Tianjin: Tianjin University,2014.
[28] 杨桂英.大型湿地植物香蒲在砷污染条件下对磷的吸收分配及其生态机制[D].昆明:云南大学,2020. YANG G Y. Effect of sediment arsenic pollution on phosphorus uptake and distribution in wetland macrophyte Typha angustifolia and their ecological mechanisms[D]. Kunming: Yunnan University, 2020.
[29] 邬淑婷,周之栋,华建峰,等.浮水植物-底泥-微生物系统对富营养化水体氮的净化作用[J].生态与农村环境学报, 2021,37(10):1341-1351. WU S T, ZHOU Z D, HUA J F, et al. Study on the N purification of eutrophic water by floating plant-sediment-microbial system[J]. Journal of Ecology and Rural Environment,2021,37(10): 1341-1351.
[30] MD N, FAISAL M H A A, RANJAN S. Metal removal kinetics,bio-accumulation and plant response to nutrient availability in floating treatment wetland for storm water treatment[J]. Water, 2022,14(11):1683.
[31] NOZAILY F A, ALAERTS G, VEENSTRA S. Performance of duckweed- covered sewage lagoons-II. nitrogen and phosphorus balance and plant productivity[J]. Water Research, 2000,34(10):2734-2741.
[32] 林海,陶艳茹,董颖博,等.基于妫水河水体水质净化的浮水植物优选[J].安全与环境学报,2019,19(5):1685-1694. LIN H, TAO Y R, DONG Y B, et al. Optimal selection of floating plants based on water purification for Guishui River[J]. Journal of Safety and Environment,2019,19(5):1685-1694.
[33] 赵丽君,陈刚新,张文超,等.2种漂浮植物对再生水水质净化能力比较[J].环境工程,2019,37(6):58-63. ZHAO L J, CHEN G X, ZHANG W C, et al. Comparison of purification of reclaimed water quality by two kinds of floating plants[J]. Environmental Engineering,2019,37(6):58-63.
[34] 冯优,陈庆锋,李金业,等.水生植物对不同氮磷水平养殖尾水的综合净化能力比较[J].农业环境科学学报,2020,39(10): 2397-2408. FENG Y, CHEN Q F, LI J Y, et al. Comparison of purification ability of aquatic plants under different concentrations of nitrogen and phosphorus in tailrace of livestock wastewater[J]. Journal of Agro-Environment Science,2020,39(10):2397-2408.
[35] WILHELM G, DORIS S. Influence of aquatic macrophytes on phosphorus cycling in lakes[J]. Hydrobiologia,1988,170(1): 245-266.
[36] 黄小龙,郭艳敏,张毅敏,等.沉水植物对湖泊沉积物氮磷内源负荷的控制及应用[J]. 生态与农村环境学报,2019,35(12): 1524-1530. HUANG X L, GUO Y M, ZHANG Y M, et al. Controlling of internal phosphorus and nitrogen loading in lake sediment by submerged macrophytes and its application[J]. Journal of Ecology and Rural Environment,2019,35(12):1524-1530.
[37] LIU L, GUAN Y T, QIN T J, et al. Effects of water regime on the growth of the submerged macrophyte Ceratophyllum demersum at different densities[J]. Journal of Freshwater Ecology,2018,33(1):45-56.
[38] 杨东翰,李本行,张立秋,等.大型溞-沉水植物组合系统去除北京沙河水库水与底泥污染物效果研究[J].环境科学学报, 2021,41(1):255-262. YANG D H, LI B H, ZHANG L Q, et al. Study on the efficiencies of removing pollutants from water and sediment of Shahe Reservoir in Beijing by Daphnia magna submerged macrophytes system[J]. Acta Scientiae Circumstantiae,2021,41(1):255-262.
[39] MADSEN V T, CEDERGREEN N. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream[J]. Freshwater Biology,2002,47(2):283-291.
[40] 陆庆楠,贺宇欣,庄文化,等.粉绿狐尾藻净水效果对氮磷浓度的响应机制[J].中国农村水利水电,2019(2):11-15. LU Q N, HE Y X, ZHUANG W H, et al. How green myriophyllum verticillatum’s water purification effect responds to nitrogen and phosphorus concentration[J]. China Rural Water and Hydropower,2019(2):11-15.
[41] CRAIG S S, MICHAEL S A. Phosphorus transfer from sediments by Myriophyllum spicatum[J]. Limnology and Oceanography, 1986,31(6):1312-1321.
[42] 伏桂仙,曹伟张,陶俊.12种水生植物对富营养化水体的净化效果[J].环境科学与技术,2021,44(增刊2):308-315. FU G X, CAO W Z, TAO J. Purification effect of 12 aquatic plants on eutrophic water[J]. Environmental Science Technology, 2021,44(Suppl.2):308-315.
[43] 王子潮,左锋,王文明,等.长沙市洋湖人工湿地冬季去污效果与植物效应[J].中南林业科技大学学报,2022,42(2):98-107. WANG Z C, ZUO F, WANG W M, et al. The decontamination effect and plant effect of Yanghu constructed wetland in Changsha city in winter[J]. Journal of Central South University of Forestry Technology,2022,42(2):98-107.
[44] SARAH D, SHAHBAZ M A, ALLAH D, et al. Microcosm study on the potential of aquatic macrophytes for phytoremediation of phosphorus-induced eutrophication[J]. Sustainability, 2022,14(24):16415-16415.
[45] 丁玲,李羚君,李剑峰,等.沉水植物净化人工水源湖原水中氮磷和悬浮物的试验研究[J].生态环境学报,2018,27(1): 122-129. DING L, LI L J, LI J F, et al. Experimental studies on purification of nitrogen, phosphorus and suspended solids in raw water from an artificial source lake by submerged macrophytes[J]. Ecology and Environmental Sciences,2018,27(1):122-129.
[46] 彭蕾,汤春芳,陈永华,等.净化生活污水的浮床植物筛选[J].中南林业科技大学学报,2020,40(5):162-170. PENG L, TANG C F, CHEN Y H, et al. Study on screening of floating bed plants to purify domestic sewage[J]. Journal of Central South University of Forestry Technology,2020,40(5): 162-170.
[47] 卢秀秀,刘云根,王妍,等.典型挺水植物应用于湿地生态修复工程污染净化效应差异性研究[J].环境污染与防治, 2024,46(1):87-91,98. LU X X, LIU Y G, WANG Y, et al. Study on the difference of sterilization effect of typical water-holding plants applied to wetland ecological restoration projects[J]. Environmental Pollution Control,2024,46(1):87-91,98.
[48] 汤鹏.不同水生植物配置对微污染水体的净化效果及相关机理研究[D].郑州:郑州大学,2021. TANG P. Study on purification performance and mechanism of different aquatic plant configurations on micro-polluted water[D]. Zhengzhou: Zhengzhou University,2021.
[49] KHANDAY A S, YOUSUF R A, RESHI A Z, et al. Management of Nymphoides peltatum using water level fluctuations in freshwater lakes of Kashmir Himalaya[J]. Limnology, 2017,18(2):219-231.
[50] SAMUEL J L T, ANDREW F, DAVID T B. Quantifying the ecological impacts of alien aquatic macrophytes: a global meta- analysis of effects on fish, macroinvertebrate and macrophyte assemblages[J]. Freshwater Biology,2022,67(11):1847-1860.
[51] 唐炳然,蔡然,王瑞霖,等.基于文献分析的我国人工湿地植物配置路线优化[J].环境工程技术学报,2022,12(3):905-915. TANG B R, CAI R, WANG R L, et al. Optimization of hydrophyte configuration route in constructed wetlands in China based on literature analysis[J]. Journal of Environmental Engineering Technology,2022,12(3):905-915.
[本文编校:吴 彬]