一类带对数的半线性椭圆方程的多解

2024-11-11 00:00:00李雨涵廖家锋

摘 要:本文研究了有界区域上一类带对数非线性项的半线性椭圆方程多解的存在性。首先,在Nehari流形上利用变分法证明该方程存在一个能量为负的正基态解;其次,证明问题对应的能量泛函满足(PS)条件,再借助Clark定理得到该问题的一列解。该结论在一定程度上补充完善了近期相关结果。

关键词:对数非线性;变分法;Nehari流形;多解

中图分类号:O177.91 文献标志码:A 文章编号:1673-5072(2024)06-0595-05

近年来,因为对数在量子力学、量子光学和核物理等领域的相关性,具有对数非线性项的各类偏微分问题引起了学者们的广泛关注。其中,关于带对数非线性项的半线性椭圆问题或者带位势的对数Schrdinger问题解的存在性的研究不在少数。例如,文献 [1]关注了如下半线性椭圆问题

参考文献:

[1] SHUAI W.Two sequences of solutions for the semilinear elliptic equations with logarithmic nonlinearities [J].Journal of Differential Equations,2023,343:263-284.

[2] TIAN S Y.Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity [J].Journal of Mathematical Analysis and Application,2017,454(2):816-828.

[3] SHUAI W.Existence and multiplicity of solutions for logarithmic Schrdinger equations with potential [J].Journal of Mathematical Physics,2021,62(5):051501.

[4] DENG Y B,HE Q H,PAN Y Q,et al.The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation [J].Advanced Nonlinear Studies,2023,23(1):20220049.

[5] SHUAI W.Multiple solutions for logarithmic Schrdinger equations [J].Nonlinearity,2019,32(6):2201-2225.

[6] ALVES C O,JI C,MATEMTICA.Multi-bump positive solutions for a logarithmic Schrdinger equation with deepening potential well [J].Science China(Mathematics),2022,65(8):1577-1598.

[7] 范海宁,刘颖,张彬林.一类具有临界指数的对数方程基态解的存在性和集中性[J].中国科学:数学,2022,52(12): 1377-1406.

[8] JI C,SZULKIN A.A logarithmic Schrdinger equation with asymptotic conditions on the potential [J].Journal of Mathematical Analysis and Applications,2016,437(1):241-254.

[9] SQUASSINA M,SZULKIN A.Multiple solutions to logarithmic Schrdinger equations with periodic potential [J].Calculus of Variations and Partial Differential Equations,2015,54(1):585-597.

[10]YUAN L,JIANG Q.Infinitely many solutions of semi-linear elliptic equations with a logarithmic nonlinear term [J].Applied Mechanics and Materials,2014,2948(496-500):2216-2219.

[11]TANAKA K,ZHANG C X.Multi-bump solutions for logarithmic Schrdinger equation [J].Calculus of Variations and Partial Differential Equations,2017,56(2):1-35.

[12]CHEN S,TANG X.Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity [J].Acta Mathmatica Hungarica,2019,157(1):27-38.

[13]TONG Y H,GUO H,FIGUEIREDO G M.Ground state sign-changing solutions for fractional logarithmic Schrdinger equations on bounded domains [J].Electronic Journal of Qualitative Theory of Differential Equations,2021(70):1-14.

[14]WILLEM M.Minimax Theorems[M].Boston:Birkhauser,1996.

[15]LIU Z L,WANG Z Q.On Clark’s theorem and it’s applications to partially sublinear problems [J].Annales De L Institut Henri Poincare-Analyse Non Lineaire,2015,32(5):1015-1037.

Multiple Solutions for A Class of Semilinear Elliptic Equationswith Logarithmic Nonlinearity

LI Yu-hana,LIAO Jia-fengab

(a.School of Mathematics & Information,b.College of Mathematics Education,

China West Normal University,Nanchong Sichuan 637009,China)

Abstract:This paper talks about the existence of multiple solutions for a class of semilinear elliptic equations with logarithmic nonlinearity on a bounded domain.Firstly,the variational method is employed to prove the existence of a positive ground state solution on Nehari manifold,which has negative energy.Secondly,it is proved that the corresponding energy functional satisfies the (PS) condition.Then,a sequence of solutions are obtained by the Clark’s Theorem.The conclusion has complemented and improved the recent relevant results to some extent.

Keywords:logarithmic nonlinearity;variational method;Nehari manifold;multiple solutions