化肥配施有机液体肥对香梨产量、品质及土壤理化性质和细菌群落结构的影响

2024-11-02 00:00王小武王志方周留艳包慧芳胡白石田艳丽王亚铜代金平谢玉清杨新平李晨华张慧涛谈疆牛宽让陶宁
西北农业学报 2024年10期

摘 要 旨在探究化肥配施有机液体肥对香梨产量和质量、土壤理化性质以及细菌群落结构的影响。以单施化肥(CF)为对照,化肥全量配施有机液体肥(CF100OFL)及化肥减量20%配施有机液体肥(CF80OFL)两种处理,利用Illumina MiSeq 平台对土壤细菌群落进行测序分析,同时测定香梨产量和品质以及土壤基本理化性质。结果表明,与CF相比,CF100OFL和CF800OFL处理显著增加香梨单果质量、可溶性固形物含量并降低可滴定酸的含量,CF100OFL和CF800OFL处理的土壤速效磷、速效钾和有机质含量较CF分别提高 59.63%、38.52%、12.03%和7.48%、7.29%%、5.92%。同时,两者土壤细菌群落多样性指数(Chao1)分别提高 26.91%和13.77%,也提高土壤变形菌门、拟杆菌门、棒状杆菌门以及浮霉菌门的相对丰度,降低放线菌门、酸杆菌门和硝化螺旋菌门的相对丰度。此外,化肥配施有机液体肥显著提高土壤过氧化氢酶、蔗糖酶和脲酶的活性。冗余分析及线性回归分析表明,速效磷、速效钾和土壤含水量是影响细菌群落的主要因子,速效磷、速效钾也是香梨单果质量和单株产量、可溶性固形物含量的主要影响因子。综合考虑产量、品质、土壤以及投入产出等因素,CF80OFL处理通过改变土壤微生物群落结构、提高微生物活性,可有效改善香梨园土壤质量,亦可增加香梨产量和品质。

关键词 香梨;化肥配施有机液体肥;产量和品质;土壤理化性质;细菌群落结构

库尔勒香梨(Pyrus sinkiangensis Yu)(以下简称香梨)是新疆特色水果之一,以其独特的风味和酥脆的口感深受国内消费者喜爱[1-2]。截至2020年,新疆香梨栽培面积约达3.33万hm2,据统计,2010年以来,仅香梨一项的收入在当地农牧民人均纯收入中占比达35.62%,显而易见,香梨已成为当地农牧民收入的主要经济来源之一[3-4],但随着香梨产业的规模化发展以及果农一味追求高产,香梨园单位面积化肥投入量不断增加,有机肥施用量逐年减少,不合理施肥现象比较普遍[4],造成香梨园土壤肥力下降、养分失衡,严重影响了香梨果实品质,制约了香梨产业的绿色可持续发展[5]。因此,亟需调整和优化施肥结构以减少化肥施用量[4]。

绿色可持续发展已成为中国农业发展的主旋律,为此,国家依次提出到2020年实现化肥和农药使用量零增长目标,到2030年和2060年分别实现“碳达峰”和“碳中和”的战略目标,化肥生产与使用走向绿色低碳势在必行[6],但不科学地降低化肥施用量,否定其增产作用是不可取的[7]。因此,化肥减施(或部分代替)是实现中国农业绿色发展的重要举措[8]。在此背景下,探索化肥减量增效的科学施肥方式已成为农业科技工作者的研究重点和热点问题[8]。使用有机肥替代部分化肥对提升土壤质量和保证作物产量是至关重要的一种农艺措施[9],目前,已有大量学者对此开展了研究,譬如生物有机肥因其供肥时效长、提高养分利用率以及改良土壤等特点被广泛应用于苹果[10]、梨[11]、猕猴桃[12]、香蕉[13-14]、番茄[10,15]、大豆[16]、玉米和小麦[17]等果树及作物中。然而,传统的有机肥大多是固体,施用方式为基施,且溶解性较差,人工成本较高,与基于水肥一体化为核心的现代农业发展兼容性较差[18]。但有机液体肥因其丰富的有益微生物、水溶性好以及施肥成本低等优点而被大量应用于改良土壤、活化土壤养分和增加作物抗性等方面[19-24];其作为新型肥料之一,对均衡养分、缓解土壤微生态失衡、实现作物优质高产具有积极作用,因此,有机液体肥的研发与应用具有较好的前景[23-25]。

笔者前期研究发现,在化肥减量20%的基础上,配施有机液体肥可显著提高香梨单果质量,然而,现今针对梨园化肥减施和有机替代的研究主要集中在土壤理化性质[4]、微生物量[26]、梨产量[2,4-5]和品质[2,4-5]等方面。化肥配施有机液体肥如何影响土壤性状?土壤物理和养分因子如何影响微生物群落结构与香梨产质量尚不明确,化肥与有机液体肥在香梨生产中的配施用量还需进一步优化。因此,本研究立足于新疆巴音郭楞蒙古自治州主要香梨种植区,从化肥配施有机液体肥提高香梨品质以及影响香梨园土壤理化与微生物性状的角度出发,于2022年在新疆库尔勒哈拉玉宫乡哈拉玉宫村香梨示范园开展田间试验,在单施化肥和化肥减量20%的基础上,配施有机液体肥(120 kg/667m2),明确不同施肥处理下香梨产量、品质、土壤理化性质和微生物性状变化间的关系,以期为香梨绿色栽培中施用有机液体肥提供理论与技术支撑。

1 材料与方法

1.1 试验地概况

试验于2022年3月至2022年10月在新疆巴音郭楞蒙古自治州库尔勒市哈拉玉宫乡哈拉玉宫村(41.60 N、86.05 E)香梨园进行,为暖温带大陆性干旱气候,年平均气温为10.3 ~11.6 ℃,年平均降水量为50~55 mm,年平均日照时间为 2 800~3 000 h,土壤为沙质壤土。

1.2 试验材料

试验地:选择长势良好、树龄为12 a的库尔勒香梨为研究对象,南北方向种植,株行距为 3 m×4 m,50株/667m2。

供试有机液体肥料由新疆万康诚一肥业有限公司生产,有效成分为:有机质≥28%(质量分数),N+P2O5+K2O ≥8%(质量分数,w(N) ≥2%,w(P2O5)≥3%和w(K2O)≥3%),pH 4.2,活性生物菌≥ 1.8亿/g;供试化肥:由新疆新化化肥有限责任公司生产,尿素,有效成分w(N)=N 46%,磷酸一铵,有效成分w(N)=10%和 w(P2O5)= 44%,硫酸钾,有效成分w(K2O)= 51%。

1.3 试验设计

试验设置3个处理,单施化肥(CF);化肥全量配施有机液体肥(CF100OLF);化肥同比减量20%配施有机液体肥(CF80OLF)。各处理具体氮、磷、钾养分施用量见表1。香梨灌水制度和施肥模式参照《DB65T3203-2011 成龄库尔勒香梨树微灌水肥管理技术规程》。3株为一个小区,小区之间用不施肥单株树相隔开,重复 5 次,随机区组排列,共计45棵树,其他按当地常规管理。

1.4 样品采集

1.4.1 土壤样品 2022年9月20日于香梨收获期,在各个处理小区的香梨树冠下距离树干 25 cm处,随机选取3 点为1个重复,重复 5 次,用土钻(内含环刀)采集0~45 cm土壤样品,分层混合并剔除石块等杂质后分成2 份,一份风干后、过筛,装入无菌自封袋,用于土壤理化性质和酶活性的测定;另一份新鲜土样装入无菌自封袋,于 -80 ℃冰箱保存,用于微生物群落结构和多样性测定。

1.4.2 库尔勒香梨果实样品 2022-09-20于香梨收获期,各个处理小区分别采摘树体全部果实带回实验室进行测定,包括果实产量(单果质量、单株果质量)和果实品质(可溶性固形物、可滴定酸含量)。

1.5 测定指标及方法

1.5.1 土壤基本理化性质 采用常规方法测定[Ay4r0snTgJJz8IG4YU4Y0tjO3Z8cCiLPQb/JbkX3BWA=24-25],用烘干法测定土壤含水量[27],土壤体积质量采用环刀法测定[28],pH 采用酸度计电位法测定[25],有机质含量采用重铬酸钾容量法[25]测定,碱解氮、速效磷和速效钾含量依次采用碱解扩散法、碳酸氢钠浸提—钼锑抗比色法以及醋酸铵浸提—火焰光度计法[25] 测定;土壤过氧化氢酶、蔗糖酶和脲酶等活性分别用高锰酸钾滴定法[25]、二硝基水杨酸比色法[25]和靛酚蓝比色法[25]测定,上述指标均重复测定 5 次。

1.5.2 土壤微生物 土壤样品委托上海派森诺生物科技有限公司基于Illumina Miseq测序平台构建文库,进行双LKGLUyLoxqu7DlF715oAT+8UBmCrYIYr0n2ZQF4cQiI=端测序,测定16S rRNA 基因V4~V5区。使用 Qiime 2软件中的 DADA2模块和Vsearch模块对原始序列进行质控、去噪、拼接、去嵌合体及OTU聚类(在97%相似度水平下进行聚类),基于Greengenes(细菌或古菌)数据库对OTU进行物种注释、丰度、多样性指数分析,并在门分类水平上进行细菌群落结构的聚类分析,进而分析各处理间的群落结构差异。

1.5.3 库尔勒香梨果实品质 单果质量用电子天平(JE502 型)称量,可溶性固形物含量利用手持折光仪进行测定,可滴定酸含量采用 NaOH 滴定法测定 [26]。上述指标均重复测定 5 次。

1.6 数据处理

用Microsoft Excel 2010 进行数据整理,数据以“平均数±标准差”的形式表示,采用 SPSS 20.0 软件进行单因素方差分析(One-way ANOVA)和邓肯(Duncan)氏法检验不同处理下土壤基本理化性质、养分含量、微生物群落以及香梨产量和品质之间的差异显著性。采用皮尔逊(Pearson)进行相关性分析。使用genescloud平台对不同处理的土壤细菌群落与土壤理化因子的关系进行分析(Redundancy analysis,RDA),以及基于Bray-Curits 距离进行各样品非度量多维尺度分析( NMDS)。利用GraphPad Prism 8 软件绘图,同时进行回归分析。

2 结果与分析

2.1 对香梨产量品质和土壤理化性质的影响

由图1可知, CF100OFL和CF80OFL处理香梨单果质量和单株产量均显著高于CF处理,其中CF100OFL处理的香梨单果质量和单株产量最高,较CF处理显著增加27.87%和18.21%(P<0.05)(图1-A和图1-B);此外,CF100OFL和CF80OFL处理的香梨可溶性固形物含量显著高于CF处理,可滴定酸含量显著低于CF处理(P<0.05)(图1-C和图1-D)。

由表2可看出,配施有机液体肥处理(CF100OFL和CF80OFL)后的土壤含水量较CF呈升高趋势,而土壤体积质量和pH呈降低趋势,但各处理间差异均不显著;CF100OFL和CF80OFL处理的土壤碱解氮含量较CF处理差异不显著(P>0.05),各处理碱解氮含量为CF100OFL>CF80OFL>CF;而CF100OFL和CF80OFL处理的土壤速效磷、速效钾和有机质含量较CF均显著提高(P<0.05),且速效磷、速效钾和有机质含量均以CF100OFL处理最高,分别达60.50 mg/kg、194.46 mg/kg和25.90 g/kg,说明有机液体肥的配施显著影响香梨园土壤的理化性质。

2.2 对土壤细菌群落多样性的影响

由表3可知,3个处理间土壤细菌群落chao1指数差异显著(P<0.05),CF100OLF最高,为 1 277.44,较CF和CF80OLF分别高26.91%和11.55%。土壤细菌群落Shannon指数、Simpson指数和Coverage指数各处理间差异不显著,但Shannon指数表现为CF100OLF>CF80OLF>CF; 而CF100OFL和CF80OFL处理的土壤细菌群落Shannon指数较CF处理呈升高趋势,Simpson和Coverage呈降低趋势,但差异均不显著(P>0.05),Simpson指数表现为CF80OLF<CF100OLF<CF,Coverage指数表现为CF100OLF<CF80OLF<CF。综上,配施有机液体肥(CF100OLF和CF80OLF)可以提高香梨园土壤细菌丰富度和多样性。

由图2可知,CF处理分别沿着NMDS1和NMDS2与CF80OFL和CF100OFL分离,CF80OFL与CF100OFL距离较小,说明与CF相比,配施有机液体肥对香梨园土壤细菌群落结构有显著影响。

2.3 对土壤细菌群落组成的影响

由图3可知,3个处理土壤中门水平的优势菌种分别为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、芽单胞菌门(Gemmatimonadetes)、硝化螺旋菌门(Nitrospirae)以及棒状杆菌门(Rokubacteria),约占总体群落丰度的92%。CF100OLF和CF80OLF处理主要增加土壤中变形菌门、拟杆菌门、棒状杆菌门以及浮霉菌门的相对丰度,增幅分别为6.11%~10.63%、4.83%~5.92%、0.46%~1.34%和0.96%~2.77%,主要降低放线菌门、酸杆菌门和硝化螺旋菌门的相对丰度有所降低,降幅分别为6.74%~7.71%、3.78%~6.25%和1.71%~2.19%,说明有机液体肥施用影响香梨园土壤细菌群落的结构组成。

使用RDA分析法比较所有土壤样品中的细菌群落结构(门水平),并确定影响群落结构的主要环境因子(图4)。RDA1和RDA2分别解释34.14%和25.23%的细菌群落结构变化。RDA1将CF80OFL处理与CF100OFL和CF处理细菌群落较明显分开;RDA2将CF处理与CF100OFL和CF80OFL 处理细菌群落较明显分开。速效磷(R2=0.777 2,P=0.001)、速效钾(R2=0.494 9,P=0.036)和含水量(R2= 0.452 9,P=0.041)与RDA2轴相关性较大;碱解氮(R2=0.279 2,P=0.211)和土壤体积质量(R2=0.035 9,P=0.86)与RDA1轴相关性较大;速效磷、速效钾和含水量对土壤细菌群落组成的影响达显著水平(P < 0.05),表明速效磷、速效钾和含水量是影响香梨园土壤细菌群落结构的主要因子。此外,速效磷与棒状杆菌门和厚壁菌门呈正相关,与芽单胞菌门呈负相关;碱解氮与厚壁菌门呈正相关,与芽单胞菌门以及棒状杆菌门呈负相关;速效钾与棒状杆菌门和厚壁菌门呈正相关,与放线菌门呈负相关;含水量、有机质对土壤细菌群落结构的影响较大,棒状杆菌门和厚壁菌门与其呈正相关,另外,pH和土壤体积质量对土壤细菌群落结构也有一定影响。

2.4 对土壤酶活性的影响

由表4可以看出,配施有机液体肥(CF80OFL和CF100OFL)后土壤的过氧化氢酶、蔗糖酶和脲酶酶活性均显著高于单施化肥(CF)(P<0.05),过氧化氢酶和脲酶活性均为CF100OFL>CF80OFL>CF,蔗糖酶活性为CF80OFL>CF100OFL>CF。其中CF100OFL处理的过氧化氢酶和脲酶活性分别是CF的1.49倍和1.73倍,CF80OFL处理的蔗糖酶活性是CF的1.53倍。

2.5 香梨产量及品质与土壤理化性状间的相关性分析

由图5可知,香梨产量受土壤含水量、碱解氮、速效磷、速效钾以及有机质含量影响,香梨品质受速效钾、有机质以及速效磷含量的影响(P<0.05)。

通过线性回归分析以比较速效磷、速效钾含量与香梨产量以及速效钾、有机质含量与香梨品质间的定量关系(图6),结果表明,土壤速效磷含量与香梨单果质量(F=118,P<0.000 1,R2=0.900 8)和单株产量(F=121,P<0.000 1,R2=0.886 8)均呈极显著正相关,速效钾含量与香梨单果质量(F=16.25,P=0.001 4,R2=0.555 6)和单株产量(F=14.15,P=0.001 2,R2= 0.665 6)均呈极显著正相关;速效钾含量与香梨可溶性固形物含量(F=6.676,P=0.0227,R2=0.339 3)呈显著正相关,与可滴定酸含量 (F=6.484,P=0.435 2,R2=0.047 51)呈负关,但差异不显著,有机质与香梨可溶性固形物(F=&nbsp; 2.984,P=0.107 8,R2=0.186 7)和可滴定酸含量(F=1.850,P=0.196 9,R2=0.124 6)呈正相关,但差异均不显著。由此可见,速效磷、速效钾含量是影响香梨单果质量和单株产量的2个主要养分因子,速效钾含量是影响香梨可溶性固形物含量的主要养分因子。

3 讨 论

有机肥替代部分化肥对提升土壤质量、保证作物产量和品质是至关重要的一种农艺措施[29]。已有研究表明,有机肥与无机肥配施有利于提高作物产量和品质[8,15],宋金龙[30]研究发现,有机肥替代30%化肥,香梨单株产量较常规施肥增加14.47%,同时也显著提高香梨的可溶性固形物、可溶性糖和维生素C含量,降低可滴定酸含量。童盼盼等[5]发现施用有机肥不仅能显著增加香梨单果质量、糖酸比,降低有机酸含量,还能有效提高香梨果实特征香气含量。本研究发现,较CF处理,CF80OFL和CF100OFL处理可显著提高香梨单果质量、可溶性固形物含量,降低可滴定酸含量,其中CF100OFL处理单果质量和可溶性固形物含量均最高,CF80OFL次之,但CF100OFL与CF80OFL处理差异不显著,这一结果与何东霞等[31]在生物有机肥部分替代化肥对韭菜生长生理及肥料利用率的影响研究相似,即生物有机肥部分替代化肥较常规施肥显著促进韭菜株高及根系活力,同时增加产量。这可能因为化肥配施有机肥提高了土壤有机质含量、改善微生物结构[32],从而促进香梨生长和改善香梨品质。有机肥与无机肥配施可以显著提高土壤理化性质[12,15],本研究结果显示,与单施化肥相比,化肥配施有机液体肥(CF80OFL和CF100OFL)可显著提高土壤速效磷、速效钾和有机质的含量,这与已有的研究结果基本一致[4, 33]。而CF80OFL和CF100OFL处理的土壤碱解氮含量与CF处理差异不显著,这可能是因为化肥中氮素易发生淋失,有机肥与无机肥配施后减缓氮淋失的发生[34],致使土壤碱解氮含量差异不显著。在本研究中,CF80OFL与CF100OFL处理土壤AP和AK的含量差异不显著,说明在香梨实际生产中,在化肥减量20%的基础上,配施有机液体肥的施肥制度是可行的。后续可就化肥减量这个角度继续开展化肥减量配施有机液体肥以及有机液体肥全量替代化肥的试验,进一步验证二者关系以探究香梨园化肥减施的可行性。

大多学者认为,细菌型土壤是土壤肥力提高的一个生物指标 [35-36]。大多研究表明,化肥减量配施有机肥能显著改善土壤养分环境[37-38],从而能有效地调控土壤细菌群落结构[35],进而有利于细菌型土壤的形成[36]。微生物多样性是评价土壤质量和肥力的重要指标[22,39],在一定程度上,其生物量和群落结构的变化可以反应土壤质量的变化[40]。已有研究表明,施肥种类和施肥量都会对土壤微生物多样性产生影响[41],本研究结果显示,与CF相比, CF80OFL和CF100OFL处理显著提高香梨园土壤细菌丰富度(P<0.05),且化肥配比比例越低越显著(CF80OFL处理的Chao1指数显著高于CF100OFL处理),这一结论与马泽跃等[42]研究结果相似,其认为施氮肥会显著降低微生物碳氮比,这是因为高氮肥投入会抑制木质素降解酶活性,加强微生物碳限制[43],对土壤微生物群落产生胁迫效应,抑制微生物生长,导致土壤微生物量降低[44];此外,王宁等[22]、陶磊等[37]以及宋以玲等[45]研究得到了类似的结果,化肥减量配施有机肥提高了棉花生殖生长阶段棉花土壤细菌和放线菌数量,且有机肥配比量越高,其效果越显著。已有研究表明,不同的施肥制度会导致土壤细菌群落组成和结构差异显著[46-48]。本研究结果表明,CF80OFL和CF100OFL处理后,变形菌门、拟杆菌门、棒状杆菌门以及浮霉菌门的相对丰度均高于CF处理,其中变形菌门增幅最高为6.11%~10.63%。变形菌门具有修复土壤、促进氮素利用等作用[49],被认为是一种富营养型物种,其相对丰度与土壤中有机质含量密切相关[50],本研究中,CF80OFL和CF100OFL处理显著增加土壤有机质含量,从而通过改变土壤理化性质使得细菌生长环境发生变化[51],有利于土壤招募变形菌门物种[51-52],致使其相对丰度增高[49]。土壤理化性质是细菌群落结构变化的重要驱动力[53],其对土壤微生物的组成、丰度以及多样性有显著影响[51]。通过RDA分析表明,影响香梨园土壤细菌群落结构的主要因子是速效磷、速效钾和土壤含水量,与邓正昕等[50]研究结果相似。本文仅研究了化肥配施有机液体肥对土壤细菌群落结构的影响,因此关于其对土壤真菌群落的影响是后期研究的重点。土壤酶活性作为表征土壤健康的重要生物指标[54],其在土壤养分循环以及有机质形成过程中具有重要作用[55],能快速响应施肥模式、耕作方式的影响[56-57]。前人研究结果表明,有机肥的施用为土壤生物活动提供了所需养分,可提高土壤酶的活性[57]。本研究中,较CF处理,CF80OFL和CF100OFL处理显著提高土壤过氧化氢酶、蔗糖酶和脲酶活性,与桑文等[58]的研究结果类似,这可能是因为有机液体肥含有各种有机酸、功能菌体生产的酶、发酵残留物等,通过底物诱导作用,从而提高土壤酶活性[59] 。

4 结 论

在香梨园中化肥减量配施有机液体肥可以改善土壤质量并增加土壤中养分的含量。由于土壤理化性质的变化,尤其是速效磷、速效钾、土壤有机质和土壤酶活的变化,有机液体肥的配施显著改变土壤中的细菌群落组成。化肥配施有机液体肥处理(CF100OFL和CF800OFL)对香梨果实品质的提升优于单施化肥处理,CF100OFL和CF800OFL处理间差异不显著。综合考虑产量、品质、土壤以及土壤酶活等因素,在香梨绿色栽培过程中可优先考虑使用CF800OFL(化肥减施率20%)施肥配比。

参考文献 Reference:

[1] 何雪菲,黄 战,张文太,等.施氮水平对库尔勒香梨光合产物分配的影响[J].应用生态学报,2020,31(8):2637-2643.

HE X F,HUANG ZH,ZHANG W T,et al. Effects of nitrogen application level on photosynthate distribution of Korla fragrant peartrees[J].Chinese Journal of Applied Ecology,2020,31(8):2637-2643.

[2] LIU Y,XIANG S,ZHANG H,et al. Sensory quality evaluation of Korla pear from different orchards and analysis of their primary and volatile metabolites[J].Molecules,2020,25(23):5567-5581.

[3] 李养义,张 峰,关晓媛.‘库尔勒香梨’产业发展优势、问题及对策[J].北方果树,2019(5):45-48.

LI Y Y,ZHANG F,GUAN X Y.‘Korla fragrant pear’ industrial development advantages,problems and countermeasures[J].North Fruit Trees,2019(5):45-48.

[4] 王程成.菌肥与化肥,有机肥配施对库尔勒香梨园土壤性质、生长及果实品质的影响[D].新疆阿拉尔:塔里木大学,2022.

WANG CH CH.Effects of combined application of bacterial fertilizer,chemical fertilizer and organic fertilizer on soil properties,growth and fruit quality of Korla fragrant pear orchard[D].Alar Xinjiang:Tarim University,2022.

[5] 童盼盼,王 龙,张亚若,等.有机肥和菌肥对库尔勒香梨果实品质及香气的影响[J].华中农业大学学报,2021,40(4):114-122.

TONG P P,WANG L,ZHANG Y R,et al. Effects of different combination of organic fertilizer and bacterial manurer on fruit quality and aroma of Korla fragrant pear[J].Journal of Huazhong Agricultural University,2021,40(4):114-122.

[6] 张福锁,申建波,危常州,等.绿色智能肥料:从原理创新到产业化实现[J].土壤学报,2022,59(04):1-17.

ZHANG F S,SHEN J B,WEI CH ZH,et al.Green intelligent fertilizer:from interdisciplinary innovation to industrialization realization[J].Acta Pedologica Sinica,2022,59(4):1-17.

[7] 巨晓棠,张 翀.论合理施氮的原则和指标[J].土壤学报,2021,58(1):1-13.

JU X T,ZHANG CH.The principles and indicators of rational N fertilization [J].Acta Pedologica Sinica,2021,58 (1):1-13.

[8] 余小芬,杨树明,邹炳礼,等.菜籽油枯有机无机复混肥对烤烟产质量及养分利用率的影响[J].土壤学报,2020,57(6):1564-1574.

YU X F,YANG SH M,ZOU B L,et al. Effects of combined application of rapeseed-cake as organic manure and chemical fertilizer on yield,quality and nutrient use efficiency of flue-cured tobacco[J].Acta Pedologica Sinica,2020,57 (6):1564-1574.

[9] JI L F,NI K,WU Z D.Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization[J].Biology and Fertility of Soil,2022,133(56):1-14.

[10] 黄自光.专用肥配施纳米蚯蚓粪生物有机肥对苹果、番茄产量与品质的影响[D].陕西杨凌:西北农林科技大学,2021.

HUANG Z G.Effects of special fertilizer combined with nano vermicompost bio-organic fertilizer on yield and quality of apple and tomato[D].Yangling Shaanxi:Northwest A&F University,2021.

[11] 吴文利.生物有机肥配施土壤调理剂对梨树生长和土壤肥力的影响[D].南京:南京农业大学,2020.

WU W L.Effects of bio-organic fertilizer combined with soil conditioner on pear tree growth and soil fertility[D].Nanjing:Nanjing Agricultural University,2020.

[12] 何 楠.不同有机肥料对猕猴桃土壤微生态及产量、品质的影响研究[D].陕西杨凌:西北农林科技大学,2019.

HE N.Effects of different organic fertilizers on soil microecology,yield and quality of kiwifruit [D].Yangling Shaanxi:Northwest A & F University,2019.

[13] 黄远迪.木霉生物有机肥在不同抗病性香蕉品种中应用的微生态效应研究[D].海口:海南大学,2020.

HUANG Y D.Microecological effects of trichoderma bio-organic fertilizer in different disease-resistant banana varieties [D].Haikou:Hainan University,2020.

[14] 李进平,周 龙,曾志伟,等.生物有机肥与生物刺激素协同对撂荒香蕉园土壤改良及枯萎病防治的影响 [J].中国南方果树,2019,48(4):57-63.

LI J P,ZHOU L,ZENG ZH W,et al. Effects of bio-organic fertilizers and biostimulants on soil improvement and fusarium wilt control in abandoned banana orchards[J].Fruit Trees in South China,2019,48(4):57-63.

[15] 唐 宇.化肥减施条件下配施生物有机肥对番茄生长及其土壤的影响 [D].乌鲁木齐:新疆大学,2019.

TANG Y.Effects of combined application of bio-organic fertilizer on tomato growth and soil under the condition of reduced chemical fertilizer application [D].Urumqi:Xinjiang University,2019.

[16] 马利平.生物有机肥替代化肥减施对大豆土壤微生物多样性的影响[D].哈尔滨:黑龙江大学,2019.

MA L P.Effects of bio-organic fertilizers replacing chemical fertilizers on soybean soil microbial diversity [D].Harbin :Heilongjiang University,2019.

[17] 相浩龙,郑文魁,刘艳丽,等.化肥有机替代技术在我国小麦、玉米生产中的应用研究进展[J].山东农业科学,2022,54(7):157-163.

XIANG H L,ZHENG W K,LIU Y L,et al.Research review of organic manure substituting chemical fertilizer technology in wheat and maize production in china[J].Shandong Agricultural Science,2022,54(7):157-163.

[18] 陶 瑞,李 锐,谭 亮,等.减少化肥配施有机肥对滴灌棉花N、P吸收和产量的影响 [J].棉花学报,2014,26(4):342-349.

TAO R,LI R,TAN L,et al.Effects of application of different organic manures with chemical fertilizers on cotton yield,N and P utilization efficiency under drip irrigation [J].Cotton Science,2014,26(4):342-349.

[19] 赖金平,姚锋先,徐丽红,等.有机液肥对赣南脐橙园土壤团聚体及其有机碳分布的影响[J].中国土壤与肥料,2022(6):16-24.

LAI J P,YAO F X,XU L H,et al.Effects of liquid organic fertilizer on soil aggregates and organic carbon distribution in navel orange orchard in Southern Jiangxi[J].China Soil and Fertilizer,2022(6):16-24.

[20] 赖金平,姚锋先,徐丽红,等.有机液肥施用对纽荷尔脐橙幼树生长及其养分吸收的影响[J].南方农业学报,2021,52(10):2814-2823.

LAI J P,YAO F X,XU L H,et al.Effects of liquid organic fertilizer on the growth and nutrient absorption of young Newhall navel orange trees[J].Southern Agricultural Journal,2021,52(10):2814-2823.

[21] 徐丽红.有机液肥施用对脐橙园土壤生物学性质及活性有机碳组分的影响研究[D].江西赣州:赣南师范大学,2021.

XU L H.Effects of organic liquid fertilizer application on soil biological properties and active organic carbon components in navel orange orchards [D].Ganzhou Jiangxi:Gannan Normal University,2021.

[22] 王 宁,南宏宇,冯克云.化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响[J].应用生态学报,2020,31(1):173-181.

WANG N,NAN H Y,FENG K Y.Effects of reduced chemical fertilizer with organic fertilizer application on cotton soil microbial biomass,enzyme activity and yield [J].Chinese Journal of Applied Ecology,2020,31(1):173-181.

[23] JIAO H,YIN Q,FAN C,et al.Long-term effects of liquid swine manure land surface application in an apple orchard field on soil bacterial community and heavy metal contents in apple (Malus pumila Mill.) [J].Environmental Science and Pollution Research International,2021,28 (36):49613-49626.

[24] SHI X J,HAO X Z,LI N N,et al.Organic liquid fertilizer coupled with single application of chemical fertilization improves growth,biomass,and yield components of cotton under mulch drip irrigation [J].Frontiers in Plant Science,2021,12:763-779.

[25] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:427-436.

BAO SH D.Soil Agrochemical Analysis [M].Beijing:China Agricultural Press,2000:427-436.

[26] 李兴发,黄 娟,杨雅婷,等.光合细菌菌剂对黄冠梨园土壤微生物区系及果实品质的影响[J].西南师范大学学报(自然科学版),2015,23(6):55-61.

LI X F,HUANG J,YANG Y T,et al.Effects of photosynthetic bacteria on soil microbial flora and fruit quality in Huangguan pear orchards [J].Journal of Southwest Normal University (Natural Science Edition),2015, 23(6):55-61.

[27] 李亚珍,陈志丕,叶元生,等.秸秆带状覆盖对旱地冬小麦旗叶水势及产量的影响[J].麦类作物学报,2022,42(8):1-8.

LI Y ZH,CHEN ZH P,YE Y SH,et al.Effects of bundled straw covering on yield of dryland winter wheat in semiarid region[J].Journal of Wheat Crops,2022,42(8):1-8.

[28] 李 猛,李海瑜,高 明.保护性耕作对黑土不同土层土壤固氮菌丰度和群落结构的影响[J].土壤与作物,2022, 11(3):273-281.

LI M ,LI H Y,GAO M.Effect of conservation tillage on the abundance and diversities of soil diazotrophic communities different soil layess of Mollisol [J].Soil and Crops,2022,11(3):273-281.

[29] 吴 宪,胡 菏,王 蕊,等.化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J].土壤学报,2022,59(2):545-556.

WU X,HU H,WANG R,et al.Effects of reduction of chemical fertilizer and substitution coupled with organic manure on the molecular ecological network of microbial communities in fluvo-aquic soil [J].Acta Pedologica Sinica,2022,59(2):545-556.

[30] 宋金龙.用有机肥部分替代化肥技术在‘库尔勒香梨’园的应用效果评估[D].乌鲁木齐:新疆农业大学,2020.

SONG J L.Evaluation of the application effect of partial replacement of chemical fertilizers with organic fertilizers in ‘Korla orchard’[D].Urumqi:Xinjiang Agricultural University,2020.

[31] 何东霞,颉建明,何志学,等.生物有机肥部分替代化肥对韭菜生长生理及肥料利用率的影响[J].西北农业学报,2020,30(6):958-968.

HE D X,XIE J M,HE ZH X,et al.Effect of partial substitution of chemical fertilizer with bio-organic fertilizer on growth physiological and fertilizer utilization efficiency in chinese chives [J].Acta Agriculturae Boreali-occidentalis Sinica,2020,30(6):958-968.

[32] 虞轶俊,马军伟,陆若辉,等.有机肥对土壤特性及农产品产量和品质影响研究进展[J].中国农学通报,2020,36(35):64-77.

YU Y J,MA J W,LU R H,et al.Effect of organic fertilizer on soil characteristics,yield and quality of agricultural products:research progress[J].China Agricultural Science Bulletin,2020,36(35):64-77.

[33] 穆凯代斯罕·伊萨克.HPS微生物菌肥对库尔勒香梨园土壤、叶片和果实品质的影响研究[D].新疆阿拉尔:塔里木大学,2022.

MUKAI DHI.Effects of HPS microbial fertilizer on soil,leaf and fruit quality of Korla fragrant pear orchard [D].Alar Xinjiang:Tarim University,2022.

[34] 雷 菲,张冬明,吴宇佳,等.化肥减量配施有机肥对樱桃番茄产量,品质和微生物群落结构的影响[J].江西农业大学学报,2022,43(6)1269-1277.

LEI F,ZHANG D M,WU Y J,et al.Influences of chemical fertilizer reduction combined with organic fertilizer application on yield and quality of cherry tomato and structure of soil microbial community[J].Acta agricultural universitatis Jiangxiensis,2022,43(6):1269-1277.

[35] 刘会芳,韩宏伟,王 强,等.不同蔬菜与番茄轮作对设施土壤微生物多样性、酶活性及土壤理化性质的影响[J]. 微生物学报,2021,61(1):167-182.

LIU H F,HAN H W WANG Q,et al.Effect of vegetables-tomato rotation on soil microbial diversity,enzyme activity and physicochemical properties of vegetables in greenhouse [J].Acta Microbiologica Sinica,2021,61(1):167-182.

[36] 姚有华,王玉林,姚晓华,等.不同种植模式对青稞根际土壤微生物群落结构的影响[J].西北农业学报,2021,30(4):545-554.

YAO Y H,WANG Y L,YAO X H,et al.Effectsof different cropping modeson microbial community structurein rhizosphere soil of Hulless Barley [J].Acta Agriculturae Boreali-occidentalis Sinica,2021,30(4):545-554.

[37] 陶 磊,褚贵新,刘 涛,等.有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J].生态学报,2014,34(21):6137-6146.

TAO L,CHU G X,LIU T,et al.Effects of replacing some chemical fertilizers with organic fertilizers on long-term continuous cropping cotton field yield,soil microbial numbers and enzyme activities [J].Chinese Journal of Ecology,2014,34( 21):6137-6146.

[38] 李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[HJYdB7AWDYgMuFSpJEuc2g==J].中国农业科学,2005,38(8):1591-1599.

LI X Y,ZHAO B Q,LI X H,et al.Effects of different fertilization systems on soil microbe and its relation to soil fertility[J].Chinese Agricultural Science,2005,38(8):1591-1599.

[39] 彭 双,林先贵,王一明.添加猪粪对不同施肥历史土壤细菌群落的影响[J].中国环境科学,2020,40(2):748-756.

PENG SH,LIN X G,WANG Y M.Effects of pig manure on bacterial community in soils with long-term application of chemical fertilizer or manure [J].China Environmental Science,2020,40(2):748-756.

[40] 熊悯梓,钞亚鹏,赵 盼,等.不同生境马铃薯根际土壤细菌多样性分析[J].微生物学报,2020,60(11):2434-2449.

XIONG M Z,CHAO Y P,ZHAO P,et al.Comparison of bacterial diversity in rhizosphere soil of potato in different habitats [J].Acta Microbiologica Sinica,2020,60(11):2434-2449.

[41] 王娟娟,朱紫娟,钱晓晴,等.减施化肥与不同有机肥配施对稻季土壤细菌群落结构的影响[J].土壤,2021,53(5):983-990.

WANG J J,ZHU Z J,QIAN X Q,et al.Effects of reducing chemical fertilizer combined with application of different organic fertilizers on soil bacterial community structure during rice season [J].Soils,2021,53(5):983-990.

[42] 马泽跃,黄 战,陈波浪,等.施氮量对库尔勒香梨园土壤微生物量的影响[J].果树学报,2022,39(7):1221-1231.

MA Z Y,HUANG ZH,CHEN B L,et al.Effects of nitrogen input on soil microbial biomass in Korla Orchard [J].Journal of Fruit Trees,2022,39(7):1221-1231.

[43] 周世兴,黄从德,向元彬,等.模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响[J]. 应用生态学报,2016,27(5):1368-1374.

ZHOU SH X,HUANG C D,XIANG Y B,et al.Effects of simulated nitrogen deposition on lignin and cellulose degradation in natural evergreen broad-leaved forest litter in Yuping area of West China[J].Chinese Journal of Applied Ecology,2016,27(5):1368-1374.

[44] HE H B,ZHANG W,ZHANG X D.Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation[J].Soil Biology & Biochemistry,2011,43(6):1155-1161.

[45] 宋以玲,于 建,陈士更,等.化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360.

SONG Y L,YU J,CHEN SH G,et al.Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth,microorganism and enzyme activities in soil [J].Journal of Soil and Water Conservation,2018,32(1):352-360.

[46] SUN H Y,DENG S P,RAUN W R .Bacterial community structure and diversity in a century-old manure-treated agroecosystem [J].Applied and Environmental Microbiology,2004,70(10):5868-5874.

[47] 刘平静,肖 杰,孙本华,等.长期不同施肥措施下[HT6,6”SS]土[KG-*3]娄[HT6SS]土细菌群落结构变化及其主要影响因素[J].植物营养与肥料学报,2020,26(2):307-315.

LIU P J,XIAO J,SUN B H,et al.Variation of bacterial community structure and the main influencing factors in Eum-orthic Anthrosols under different fertilization regimes[J].Journal of Plant Nutrition and Fertilizers,2020,26(2):307-315.

[48] 靳晓拓,马继勇,周彦妤,等.化肥减量配施有机肥下芒果园土壤细菌多样性及群落结构特征[J].热带作物学报,2019,40(6):1205-1212.

JIN X T,MA J Y,ZHU Y Y,et al.Bacterial diversity and community structure characteristics of mango orchard soil under reduced chemical fertilizer and increased organic fertilizer application [J].Chinese Journal of Tropical Crops,2019,40(6):1205-1212.

[49] LI Y C,LI Z,LI Z W,et al.Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach [J].Journal of Applied Microbiology,2019,121(334):787-799.

[50] 邓正昕,高 明,王蓥燕,等.化肥减量配施有机肥对柠檬根际/非根际土壤细菌群落结构的影响[J].环境科学,2021,5(23):1-17.

DENG ZH X,GAO M,WANG Y Y,et al.Effects of chemical fertilizer reduction combined with organic fertilizer application on bacterial community structure in rhizosphere/non-rhizosphere soil of lemon[J].Environmental Science,2021,5(23):1-17 .

[51] SADET-BOURGETEAU S,HOUOT S,DEQUIEDT S, et al.Lasting effect of repeated application of organic waste products on microbial communities in arable soils [J].Applied Soil Ecology,2018,125(233):278-287.

[52] 杨 昊.碳氮物料对有机菜田土壤微生物多样性的影响[D].上海:上海交通大学,2015.

YANG H.Effects of carbon and nitrogen materials on soil microbial diversity in organic vegetable fields [D].Shanghai:Shanghai Jiaotong University,2015.

[53] 王兴龙,朱 敏,杨 帆,等.配施有机肥减氮对川中丘区土壤微生物量与酶活性的影响[J].水土保持学报,2017,31(3):271-276.

WANG X L,ZHU M,YANG F,et al.Effects of reducing nitrogen and applying organic fertilizers on soil microbial biomass carbon and enzyme activity in the hlily area of central sichuan basin[J].Journal of Soil and Water Conservation,2017,31(3):271-276.

[54] YAN J,PAN G,LI L,et al.Adsorption,immobilization,and activity of β-glucosidase on different soil colloids[J].Journal of Colloid and Interface Science,2010,348(2):565-570.

[55] 张传更,高 阳,张立明,等.水分管理措施对施用有机肥麦田土壤酶活性和微生物群落结构的影响[J].灌溉排水学报,2018,37(2):38-44.

ZHANG CH G,GAO Y,ZHANG L M,et al.Effects of water management on soil enzyme activitiesand microbial community structure in wheat fields with organic fertilizer application [J].Journal of Irrigation and Drainage,2018,37(2):38-44.

[56] 付智丹,周 丽,陈 平,等.施氮量对玉米/大豆套作系统土壤微生物数量及土壤酶活性的影响[J].中国生态农业学报,2017,25(1):1463-1474.

FU ZH D,ZHOU L,CHEN P,et al .Effects of nitrogen application rate on soil microbial quantity and soil enzyme activities in maize / soybean intercropping system[J].Chinese Journal of Ecological Agriculture,2017,25(1):1463-1474.

[57] 陈桂芬,刘 忠,黄雁飞,等.不同施肥处理对连作蔗田土壤微生物量、土壤酶活性及土壤养分的影响[J].农业科学与技术,2017,18(2):256-261.

CHEN G F,LIU ZH,HUANG Y F,et al.Effects of different fertilization treatments on soil microbial biomass,soil enzyme activities and related nutrients in continuous-cropping sugarcane field[J].Agricultural Science & Technology,2017,18(2):256-261.

[58] 桑 文,赵亚光,张霁峰,等.化肥减量配施有机液体肥对加工番茄生长及土壤酶活性的影响[J].中国土壤与肥料,2021,12(2):53-60.

SANG W,ZHAO Y G,ZHANG J F,et al.Effects of chemical fertilizer reduction combined with organic liquid fertilizer on processed tomato growth and soil enzyme activity[J].China Soil and Fertilizer,2021,12(2):53-60.

[59] EIVAZI F,BAYAN M,SCHMIDT K.Select soil enzyme activities in the historic sanborn field as affected by long-term cropping systems[J].Communications in Soil Science and Plant Analysis,2003,34(16):2259-2275.

Effects of Chemical Fertilizers Combined with Organic Liquid Fertilizers on Yield, Quality, Soil Physical,Chemical Properties and Bacterial Community Structure of Fragrant Pear

WANG Xiaowu1, WANG Zhifang1, ZHOU Liuyan1, BAO Huifang1, HU Baishi2,TIAN Yanli2,WANG Yatong3, DAI Jinping1, XIE Yuqing1, YANG Xinping1,LI Chenhua4 ZHANG Huitao1, TAN Jiang5, NIU Kuanrang5and TAO Ning6

(1.Institute of Microbiology Application, Xinjiang Academy of Agricultural Sciences,Urumqi 830091,China;2.Nanjing Agricultural University, Nanjing 210095,China;3.Luntai National Fruit Germplasm ResourcesGarden of Xinjiang Academy of Agricultural Sciences, Korla Xinjiang 841600 China; 4.Xinjiang Institute ofEcology and Geography, Chinese Academy of Sciences, Urumqi 830091,China;5.XinjiangWankang Chengyi Fertilizer Co., Ltd. Company, Urumqi 830091,China;6.Beijing Dongzhou Jinlu Technology Co., Ltd., Beijing 100053,China)

Abstract Effect of combining chemical fertilizer with organic liquid fertilizer on the yield and quality,and soil physical and chemical properties,as well as bacterial community structure of Korla fragrant pear, were studied. Single application of chemical fertilizer (CF) was used as the control, while the full amount of chemical fertilizer combined with organic liquid fertilizer (CF100OFL) and the reduction of 20% of chemical fertilizer combined with organic liquid fertilizer (CF80OFL) were used as different fertilization treatments. The Illumina MiSeq platform was used to perform sequence analysis of soil bacterial community, while the yield and quality of Korla pear and the basic physical and chemical properties of soil were determined. Compared with CF, CF100OFL and CF80OFL treatments significantly increased the single fruit mass, soluble solids and decreased titratable acid content of fragrant pear. In addition, soil available phosphorus and available potassium and organic matter content in CF100OFL and CF80OFL treatments increased by 59.63%, 38.52%, 12.03% and 7.48%, 7.29%, 5.92%, respectively. Soil water content, Soil bulk density, pH and alkaline nitrogen also changed, however, no significant difference was observed. The soil bacterial community diversity index (Chao1) increased by 26.91% and 13.77%, respectively. Simultaneously, the relative abundances of Proteobacteria,Bacteroidetes Rokubacteria and Planctomycetes significantly increased, while the relative abundances of Actinobacteria,Acidobacteria and Nitrospirae decreased. Redundancy analysis showed that soil available phosphorus, available potassium and soil water content were the major factors affecting bacterial communities. In addition, chemical fertilizer combined with organic liquid fertilizer (CF100OFL and CF80OFL) treatments also significantly increased the activities of soil Catalase,Invertase and Urease activity. Linear regression analysis showed that available phosphorus and available potassium were the two main factors affecting the fruit weight and yield per plant of fragrant pear, and available potassium was the the main factor affecting the soluble solids of fragrant pear. Chemical fertilizer combined with organic liquid fertilizer application could increase the yield and quality of Korla pear and improve the soil physicochemical and microbial community structure. There was no significant difference between CF100OFL and CF80OFL treatments. In terms of yield, quality, soil, and input-output ratio, the CF80OFL treatment is the most beneficial to increase the yield of Korla Pear and improve its fruit quality during the green cultivation of Korla pear.

Key words Korla fragrant pear; Chemical fertilizer combined with organic liquid fertilizer; Korla Pear yield and quality; Soil physical and chemical properties; Bacterial community structure

Received 2023-02-09 Returned 2023-03-18

Foundation item Collaborative Innovation Project (Science and Technology Aid Xinjiang Program) of Xinjiang Uygur Autonomous Region (No.2021E02022); Stable Support Project for Agricultural Science and Technology Innovation of Xinjiang Academy of Agricultural Sciences (No.xjnkywdzc-2022005); National Natural Science Foundation of China (No.42271068);Science and Technology Innovation Key Cultivation Project of Xinjiang Academy of Agricultural Sciences (No.xjkcpy-2020006).

First author WANG Xiaowu, male, assistant research fellow. Research area:integrated control of agricultural pests. E-mail:wxw303528@163.com

WANG Zhifang, male, associate research fellow. Research area:efficient utilization of water and fertilizer resources. E-mail:34394820 @qq.com

Corresponding author YANG Xinping, male, research fellow. Research area:efficient utilization of water and fertilizer resources. E-mail:yangxin9337@163.com

LI Chenhua, female, associate research fellow. Research area:efficient utilization of water and fertilizer resources. E-mail:lichenhua@ms.xjb.ac.cn(责任编辑:顾玉兰 Responsible editor:GU Yulan)

基金项目:自治区区域协同创新专项(科技援疆计划)(2021E02022);新疆农业科学院农业科技创新稳定支持专项(xjnkywdzc-2022005);国家自然科学基金(42271068);新疆农业科学院科技创新重点培育专项(xjkcpy-2020006)。

第一作者:王小武,男,助理研究员,研究方向为农业昆虫与害虫防治。 E-mail:wxw303528@163.com

王志方,男,副研究员,研究方向为水肥资源高效利用。 E-mail:34394820@qq.com

通信作者:杨新平,男,研究员,研究方向为水肥资源高效利用。 E-mail:yangxin9337@163.com

李晨华,女,副研究员,研究方向为水肥资源高效利用。E-mail:lichenhua@ms.xjb.ac.cn