摘要:小分子热激蛋白(sHSPs)是一类不依赖于腺嘌呤核苷三磷酸并具有分子伴侣功能的功能保守型蛋白质。sHSPs在植物受到高温胁迫时产生的热激反应中尤为重要,通过防止错误蛋白质的热集聚、与其他热激蛋白互作,促使错误蛋白质被降解或重新折叠,进而帮助植株响应高温。同时,sHSP的表达受到热休克元件、热休克转录因子、长链非编码RNA(lncRNA)、小分子RNA(miRNA)及一些植物激素的调控。本文总结了植物sHSPs结构功能、调控机制及相关研究进展,着重阐述了植物sHSPs在高温胁迫下的响应机制,为研究植物响应高温的机制提供参考。
关键词:小分子热激蛋白;高温胁迫;激素;植物
中图分类号:Q946.1文献标识码:A文章编号:1000-4440(2024)07-1343-08Role of small molecule heat shock proteins in plants’ response to high temperature stressXU Tong WANG Yingqi LI Yuan ANSAH Ebenezerottopah JIANG Min YANG Wenfei WU Yunfei
(1.College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;2.Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Agricultural College of Yangzhou University, Yangzhou 225009, China;3.Huaiyin Institute of Agricultural Sciences in Xuhuai Region of Jiangsu, Huai’an 223001, China)
Abstract:Small molecule heat shock proteins (sHSPs) are a type of functionally conserved proteins that do not depend on ATP and have molecular chaperone function. sHSPs are particularly important in the heat shock response of plants under high temperature stress. By preventing the thermal aggregation of error proteins and interacting with other heat shock proteins, sHSPs promoted the degradation or refolding of error proteins, thereby helped plants to respond to high temperatures. Besides, the expression of sHSP was regulated by heat shock elements, heat shock transcription factors, long non-coding RNA (lncRNA), micro RNA (miRNA) and some plant hormones. This article reviewed the gene structure, function, regulatory mechanism and related research progress of plant sHSPs, focused on the response mechanism of plant sHSPs under high temperature stress, so as to provide a reference for studying the mechanism of plants’ response to high temperature.
Key words:small molecule heat shock protein;heat stress;hormone;plant
近年来,人类活动导致全球气温升高。联合国政府间气候变化专门委员会(IPCC)第6次评估报告内容显示,过去1个多世纪中,化石燃料的燃烧以及不可持续的能源与土地的使用导致全球气温上升了1.1 ℃,未来10年里全球气温上升将超过1.5 ℃[1]。全球气温升高不利于喜温作物的生长,这种不利影响在中低纬度地区体现得更为明显。高温胁迫首先会对细胞壁果胶Ca2+造成影响,接着会影响细胞膜和膜蛋白的正确转录翻译,从而进一步改变质膜的流动性和通透性,影响信号运输。其次,高温可能会抑制三羧酸循环和氧化磷酸化过程中相关酶的活性[2],进而导致腺嘌呤核苷三磷酸(ATP)和烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的供应不足。此外,高温会诱导活性氧(ROS)的积累,导致细胞结构损伤。叶绿体是植物中重要的光合作用场所,作为产生ROS的主要场所之一,极易受到高温的影响,尤其是光系统Ⅰ(PSⅠ)和光系统Ⅱ(PSⅡ)的结构易受到严重影响[3]。以重要的粮食作物水稻为例,中国种植水稻的面积位列世界第二,产量位列世界第一。环境的日均最低温度每上升1 ℃便会导致水稻产量损失10%[4]。在萌发期,种子受高温胁迫会导致胚芽长度和根尖数显著减少,抗氧化酶活性和相关基因表达也受到抑制[5]。在营养生长期,高温胁迫致使叶绿体基粒片层断裂,导致叶绿素合成速率降低、叶片气孔导度显著降低,这不仅导致株高、分蘖数、干物质重以及叶面积和光合速率下降,还明显影响根系的生长,甚至直接导致植株死亡[6-7]。在生殖生长时期,高温会导致花粉败育、柱头表面分泌物减少、柱头萎蔫、花粉管生长异常、雌蕊细胞中ROS过量积累,造成细胞膜系统损伤,雌蕊细胞程序性死亡和生理活性显著降低,抑制籽粒灌浆,导致同化物分配受阻和粒重显著下降[8-10]。
1热激蛋白的功能
植物是静态固着生长的生物,通过对外界温度的及时感知,再通过主动的自身形态建成来适应极端的环境。近10年来,植物感受温度的途径已经得到广泛的研究[11-12]。植物通过一系列生理响应机制应对高温胁迫,如调节细胞壁中Ca2+进入细胞质中、激活热休克反应(HSR)、改变蛋白质的亚细胞定位、利用热激蛋白帮助蛋白质正确折叠及转运等。根据前人的研究结果,线粒体热激蛋白能够调节氧化还原反应中电子传递链的细胞色素生成,从而诱导ROS产生,促进高温下种子的萌发[13]。在热胁迫诱导下,热激蛋白还能和变性蛋白结合,帮助蛋白质折叠[14-16]。
热激蛋白(HSP)作为分子伴侣,辅助蛋白质的正确折叠,于1962年在果蝇体内首次被发现[17],1982年热激蛋白的分子伴侣功能被正式提出[18]。热激蛋白除了在受胁迫的细胞中表达外,在正常的细胞中亦有表达。据此可分为组成型HSP,也称为热休克同源蛋白(HSC),以及诱导性HSP,两者在结构和功能上相似。小分子热激蛋白(sHSPs)是一类相对分子量较小的热激蛋白类型[19],相对分子量范围为12 000~42 000,广泛地分布于真核生物和部分原核生物中[20]。sHSP由α-晶体蛋白结构域(ACD)、N末端区域(NTR)和1个短的C末端区域(CTR)构成,其中保守序列ACD被高度灵活的NTR和CTR所包围[21],中间部分包括2个疏水的β折叠域和1个亲水的α螺旋,通过ACD结构域可以识别sHSP[22]。同时,两侧较短的C端和可变长度的N端有助于sHSPs识别变性蛋白,帮助其折叠或稳定。根据前人的研究结果,sHSPs的C端可能和维持分子伴侣的活性有关,N端臂可能和底物蛋白质的相互作用相关[23-24]。在植物受到逆境胁迫时,sHSPs含量骤增[25],可作为分子伴侣,帮助蛋白质折叠以及蛋白质建立正确构象,同时也可参与多肽链的降解和转录调控。sHSPs区别于其他大分子蛋白质,不依赖于ATP发挥功能。而蛋白质保持结构和功能正常,需要sHSPs的参与。根据序列同源性及亚细胞定位分析结果,被子植物中sHSPs包含11个亚家族(CⅠ~CⅥ、MTⅠ、MTⅡ、ER、CP和 PX)。其中,6个sHSP亚家族(CⅠ~CⅥ) 定位于细胞质或细胞核,2个亚家族(MTⅠ和MTⅡ)定位于线粒体,其他3个亚家族(CP、ER、PX)分别定位于叶绿体、内质网和过氧化物酶体[22]。在核质sHSP中,CⅠ、CⅡ、CⅢ亚家族保守性高,其中CⅠ亚家族的蛋白质数目最多。
目前sHSPs蛋白在多种植物中被鉴定,如在拟南芥(Arabidopsis thaliana L.)中鉴定到19个[26],在水稻(Oryza sativa L.)中鉴定到23个[27],在番茄(Solanum lycopersicum L.)中至少鉴定到42个[28],在小麦(Triticum aestivum L.)中鉴定到109个[29],在玉米(Zea may L.)中鉴定到44个[30]。在拟南芥中,AtHSP17.8能够通过调节脱落酸(ABA)信号来正向调控其抗逆境能力[31],并且可能调控叶绿体膜蛋白靶向性[32]。拟南芥中叶绿体HSP21能够和类囊体相互作用,通过保护膜免受氧自由基引起的膜脂过氧化来抵抗高温[24]。在高温条件下,水稻CⅠ类sHSP基因HSP16.7A、HSP16.9B、HSP16.9C、HSP17.4、HSP17.7、HSP17.9 A和HSP18的表达均会受到影响[33]。 如OsHSP16.9过表达有助于提高水稻的耐热能力[34]。OsHSP17.4和OsHSP17.9A能够防止蛋白质的不可逆热聚集,并通过防止柠檬酸合成酶的聚集来抵御高温。OsHSP17.7过表达能够提高植物耐热性、对紫外线-B(UV-B)的抗性以及耐旱性[35-36]。研究结果还表明,sHSP能够调控萌发种子的基础耐热性以及影响种子的寿命,其中OsHSP17.9A、OsHSP17.4和OsHSP16.9A在幼苗期和花期表达量有所上调[37]。除了CI-sHSP类基因外,其他的水稻sHSP也和耐热性相关,如sHSP22能影响生长素的运输,调控下胚轴的伸长来响应高温[38-39]。叶绿体OsHSP26.7受到氧化胁迫和高温胁迫的诱导,在体内热应激和氧化应激期间对光系统Ⅱ(PSⅡ)的保护起着重要作用[40]。在玉米中,ZmHSP22是第1个被证明磷酸化的蛋白质,同年发现AtHSP17.6A在拟南芥中过表达能够增强其响应渗透胁迫的能力[41- 42]。胞质型蛋白ZmHSP16.9受到H2O2和高温的诱导表达,在烟草中表达能够显著提升其抗高温和抗氧化胁迫的能力[43]。小麦中叶绿体sHSP26在种子发育后期起作用,其在拟南芥中表达能够提升植株对高温的耐受性,该基因和基础耐热紧密相关[44]。在番茄中,叶绿体SlHSP21能够保护PSⅡ,在番茄果实成熟的过程中能抵抗氧化胁迫。该基因存在乙烯激素响应相关的基序,其可能和乙烯调控有关,具有类似功能的还有SlHSP20、SlHSP22和SlHSP27[45]。在与光系统Ⅰ(PSⅠ)活性相关的WHIRLY1过表达植株中,SlHP21.5上调表达,能够增加膜稳定性和可溶性糖的含量,降低ROS的积累,进一步增强植株耐热性[30]。
2热胁迫下小分子热激蛋白的表达调控2.1热休克转录因子和热休克元件上游元件作用
热休克元件(HSE)作为热激反应中调控HSP表达的上游调控元件,通过和高温下热休克转录因子(HSF)形成三聚体[46-49],来调控HSP相关基因的转录表达。HSF包含3个功能域:DNA结合结构域(DBD)、寡聚结构域(OD)、核定位结构域(NLS)[48],其中DBD能特异性地和HSE结合,来启动sHSP的表达,同时sHSP网络也能反过来作用于HSFA2,通过影响其溶解度、细胞定位功能和激活剂的功能影响sHSP蛋白活性[50]。在热激反应中,HSF相关因子被证明在其中起到重要作用,如HSFA2 mRNA能够通过发夹结构来感知外界高温[51],在拟南芥中,HsfA1有助于植物的获得性耐热[52],HSFA2被证实参与植物的热胁迫记忆[53]。现阶段研究者已经从不同的植物中分离到许多HSF和HSP,前人在拟南芥中至少发现了21种HSF[54],在水稻中至少克隆到19种HSF[55]。其中,HSFA1a、HSFA1b和HSFA1d是热激反应的主要正调节基因[52],HSFA2对植物的耐热性有正向调控作用[53],OsHSFA2d能通过热胁迫下的选择性剪接,从正常情况下无转录活性的OsHSFA2dII形式转变为有转录活性的OsHSFA2dI形式来响应高温[56]。水稻3 号染色体上的耐热基因HTG3选择性剪接的亚型能够编码功能性HSF,前人研究结果表明,HTG3能够通过调节胁迫相关基因的表达和茉莉酸信号基因,从而调控水稻耐热性[57]。
2.2长链非编码RNA和小分子RNA的下游元件作用长链非编码RNA(lncRNA)和小分子RNA(miRNA)是在植物应激反应中基因表达调节过程的重要组成部分,在转录和转录后调控中起到重要作用[58]。lncRNA、miRNA、mRNA和sHSP可以共同形成 miRNA-lncRNA-mRNA网络或lncRNA-miRNA-mRNA网络,以应对生物和非生物胁迫[59]。miRNA调节的sHSP能在热胁迫过程中被诱导,从而使细胞快速产生响应胁迫的蛋白质[60]。研究结果表明,高温下miR156亚型被诱导表达,通过负调控SPL来解除SPL对热胁迫基因的控制,从而激活HSP的表达[61]。除此以外,在高温下,拟南芥HSFA1b、HSFA7b通过和miR398的启动子结合以激活miR398表达,CSD1、CSD2和CCS转录表达水平下调,进而促进HSP/HSF的积累,增强植株耐热性[62]。
3植物激素对小分子热激蛋白表达的影响当植物受到非生物胁迫时,植物激素可以和其他激素或蛋白质(如热激蛋白、特异性转录因子)互作[63],通过信号级联反应响应逆境胁迫。下面对脱落酸、乙烯、茉莉酸、赤霉素对热激反应中热激蛋白表达调控的影响进行介绍。
3.1脱落酸
脱落酸(ABA)在植物受到热胁迫、干旱胁迫等逆境胁迫时,会在植物体内大量积累,调控下游逆境相关基因的表达,来抵御胁迫。研究发现, ABA可以通过调节HSF和HSP表达来提高植物的耐热性。施加外源ABA,能够提高水稻幼苗的抗氧化防御能力和热激反应相关基因(如OsHSP23.7、OsHSP17.7、OsHSF7和OsHsfA2a)的表达水平,从而增强水稻幼苗的耐热性[64]。
除此以外,在其他植物中,ABA的调控作用得到了更广泛的研究,如热胁迫上调小麦热激转录因子编码基因TaHsfA6f的转录水平,过表达TaHsfA6f的拟南芥转基因植株,ABA含量会显著增加,这提高了拟南芥对各种逆境的耐受性。进一步的转录组学分析结果表明,在热胁迫条件下,ABA激活TaHsfA6f的表达,而TaHsfA6f又反过来增强ABA的积累,形成正反馈回路,加强了对热胁迫的响应[65]。此外,研究结果表明,在HSFA6b无效突变体、HSFA6b过表达株系和HSFA6b显性负性突变体的种子萌发、子叶绿化、根系伸长的生长阶段,HSFA6b正调控ABA介导的耐盐和耐旱反应,其作为ABA介导的热胁迫反应的下游调节因子发挥作用,并且是抗热胁迫所必需的[66]。在高温条件下,玉米ZmHSP26具有保护叶绿体PSⅡ的能力,并且其表达受到ABA的调控[67]。除此以外,外源ABA处理会导致核定位蛋白ZmHsfA4a编码基因下调表达,进而降低下游HSP相关基因的表达量,来响应干旱[68]。在ABA和吲哚乙酸(IAA)处理下,丹参(Salvia miltiorrhiza Bunge)体内SmHSP21.8可被诱导表达[69]。
ABA还能通过调节植物中酶的活性、糖类物质含量来响应热胁迫。ABA在高温胁迫下会诱导植物烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的表达从而使ROS含量增加,再通过提高ROS水平来增强抗氧化能力,从而增强植物耐热性[70-71]。同时,ABA 还可以通过加速蔗糖的运输和增强碳代谢和促进能量平衡,以增强植物的耐热性[72-73]。参与蔗糖转运和代谢的基因,如与蔗糖转运蛋白、蔗糖合酶和转化酶相关的基因,在热胁迫下都可能被ABA激活[74]。
3.2茉莉酸
茉莉酸(JA)、茉莉酸甲酯(MeJA)是植物中重要的内源激素。茉莉酸在植物质体和过氧化物酶体中合成,茉莉酸甲酯在植物胞质中以茉莉酸为前体,在酶的催化下形成。茉莉酸主要调节植物正常生长发育(尤其是开花、结果和衰老) 过程中植物对生物胁迫(病原体、昆虫等)和非生物胁迫(低温、盐、干旱、高温、重金属等胁迫)的应答反应[75]。研究结果表明,HTG3a能够编码功能性HSF,正向调控水稻耐热性,进一步的研究结果表明,HTG3a能够和OsJAZ9和OsJAZ12的启动子结合,OsJAZ9和OsJAZ12转录表达水平上调,并且OsJAZ9能作为水稻耐热性的正调控基因帮助抵抗热胁迫[57]。低温胁迫下,对番茄外源施用水杨酸甲酯(MeSA),可诱导番茄中sHSP转录本的积累,尤其是Ⅱ类sHSP的转录本丰度增加,降低了低温胁迫对番茄的伤害[76]。在烟草(Nicotiana tabacum L.)中,用外源MeJA 处理单一叶片后,可以检测到sHSP被诱导表达,从而响应热胁迫[77]。在拟南芥响应高温胁迫的过程中,外源施加低剂量JA,有助于拟南芥维持细胞活力:如拟南芥突变体cpr5-1中JA信号通路的组成型表达被激活,则耐热能力提升,而当cpr5-1与缺乏JA生物合成途径的突变体jar1-1或缺乏JA信号通路的突变体coi1-1杂交后,耐热性降低[78]。此外,最近的一项研究结果表明,较高的温度导致JOXs和ST2A的表达量增加,具有生物活性的茉莉酸盐浓度降低,导致JAZ蛋白丰度增加,从而促进植物在高温下生长[79]。
3.3乙烯
乙烯(Ethylene)是一类内源性植物激素,在20世纪30年代被发现可在植物中合成[80],其既可以单独调控果实的成熟,也可以和其他植物激素、大分子蛋白质协同作用,共同调控植物的生命进程,并参与植物的应激反应[81-82]。乙烯在植物体中的合成途径已得到广泛研究,其主要通过S-腺苷甲硫氨酸被1-氨基环丙烷-1-羧酸(ACC)合酶(ACS)催化生成ACC,最后,ACC氧化酶(ACO)催化ACC形成乙烯、二氧化碳和氰化物[83-84]。在不同的植物中,乙烯调控方式不同,在番茄热激反应中,乙烯以下游转录因子MADS-RIN 为媒介,来调控下游SlHSP17.6、SlHSP17.7A、SlHSP17.7B、SlHSP20.0和SlHSP20.1 5个Ⅰ类热激蛋白基因的表达[45],其中SlHSP17.7A和SlHSP17.7B的表达模式和ACS、MADS-RIN相似,且外源乙烯的施加会使SlHSPA/SlHSPB表达量下调[85]。在禾本科植物中,AP2/EREBP家族中ERF014s被证实与禾本科植物中sHSP-ERF014基因座上sHSP基因簇共同进化,在热激反应早期,ERF014s可以参与HSFAs-HSPs网络,直接调控sHSP的表达[86],这有助于研究高温驯化植物的进化历程。
3.4赤霉素
赤霉素(GA)是植物生长激素,对种子萌发、解除种子的休眠以及植物的茎、花、种子发育有积极作用[87]。赤霉素主要是通过和受体GID1以及DELLA蛋白形成复合体,再进行泛素化降解来进行GA的信号调节[88]。GA可以和ABA拮抗介导植物的多种生理过程,GA和ABA的比例平衡对正常发育和应激反应至关重要[89]。非生物胁迫通过影响ABA和GA含量的平衡来触发相关的胁迫反应,高温会增加拟南芥种子中的ABA含量并降低GA含量,来降低高温造成的伤害[90]。研究结果表明,在水稻中,株型调控基因NAL11能够编码含有Dna J结构域的HSP,可参与叶绿体的发育、维持GA在植物中的稳态,从而提升植物在高温下的存活率[91]。
4展望
近年来全球气候变暖导致高温天气频发,对植物的生长发育产生了不可逆转的影响。在高温胁迫下,sHSP的转录表达容易受到上游HSFs、HSE、LncRNA和miRNA的调控。植物激素也能从转录组水平来影响HSF、sHSP及其他热激调控元件的表达。然而,sHSP容易形成二聚体或多聚体,存在较强的冗余作用,导致现阶段对sHSPs在热胁迫中的功能及互作机制所知甚少。因此,在后续的研究中需要注意如下内容:(1) 构建更多的sHSP单突变或多突变遗传材料,有助于进一步挖掘sHSP耐热基因;(2) 除了HSF和HSE,探索新的调控因子及不同植物激素通过哪些LncRNA和miRNA进而诱导sHSP的转录表达,进而建立调控网络;(3) 籼稻和粳稻耐高温能力具有显著差异,尝试构建不同的点突变或使用近等基因系株系来构建耐高温水稻新种质资源用于应对未来可能出现的高温逆境。
参考文献:
[1]ROMERO H L A J. Climate change 2023:synthesis report. Contribution of working groups Ⅰ,Ⅱ and Ⅲ to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva:IPCC,2023.
[2]KAN Y, MU X R, GAO J, et al. The molecular basis of heat stress responses in plants[J]. Molecular Plant,2023,16(10):1612-1634.
[3]LEE B H, WON S H, LEE H S ,et al. Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice[J]. Gene,2000,245(2):283-290.
[4]PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(27):9971-9975.
[5]于玉凤,杨颖慧,潘素君,等. 肌肽对高温胁迫下水稻种子萌发及其生理特性的影响[J/OL]. 分子植物育种,2022:1-12. https://kns.cnki.net/kcms/detail/46.1068.s.20220325.1059.002.html.
[6]余欣,童飞,詹妮,等. 干旱-高温交叉胁迫对水稻幼苗光合特性的影响[J]. 干旱地区农业研究,2022,40(3):72-78.
[7]穰中文,周清明. 水稻高温胁迫的生理响应及耐热机理研究进展[J]. 中国农学通报,2015,31(21):249-258.
[8]张明静,韩笑,胡雪,等. 不同种植方式下温度升高对水稻产量及同化物转运的影响[J]. 中国农业科学,2021,54(7):1537-1352.
[9]周宇娇,张伟杨,杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志,2022(4):1-8.
[10]张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京:中国农业科学院,2019.
[11]CHEN D, LYU M, KOU X X, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Molecular Cell,2022,82(16):3015-3029.
[12]JUNG J H, BARBOSA A D, HUTIN S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature,2020,585(7824):256-260.
[13]MA W, GUAN X, LI J, et al. Mitochondrial small heat shock protein mediates seed germination via thermal sensing[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(10):4716-4721.
[14]LEE G J, ROSEMAN A M, SAIBIL H R, et al. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state[J]. The EMBO Journal,1997,16(3):659-671.
[15]LEE G J, VIERLING E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein[J]. Plant Physiology,2000,122(1):189-197.
[16]EHRNSPERGER M, GRAEBER S, GAESTEL M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation[J]. The EMBO Journal,1997,16(2):221-229.
[17]RITOSSA F. A new puffing pattern induced by temperature shock and DNP in drosophila[J]. Experientia,1962,18(12):571-573.
[18]PELHAM H R. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene[J]. Cell,1982,30(2):517-528.
[19]黄祥富,黄上志,傅家瑞,等. 植物热激蛋白的功能及其基因表达的调控[J]. 植物学通报,1999,16(5):530-536.
[20]WATERS E R, VIERLING E. Plant small heat shock proteins - evolutionary and functional diversity[J]. New Phytologist,2020,227(1):24-37.
[21]ZHANG N, JIANG J. Research advances of small heat shock protein gene family (sHSPs) in plants[J]. Plant Physiology Journal,2017,53(6):943-948.
[22]WATERS E R. The evolution,function,structure,and expression of the plant sHSPs[J]. Journal of Experimental Botany,2013,64(2):391-403.
[23]BASHA E, JONES C, BLACKWELL A E, et al. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones[J]. Journal of Molecular Biology,2013,425(10):1683-1696.
[24]BERNFUR K, RUTSDOTTIR G, EMANUELSSON C. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants[J]. Protein Science,2017,26(9):1773-1784.
[25]JAGADISH S V K, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2010,61(1):143-156.
[26]SCHARF K D, SIDDIQUE M, VIERLING E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)[J]. Cell Stress & Chaperones,2001,6(3):225-237.
[27]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes:genomic organization and expression profiling under stress and development[J]. Bmc Genomics,2009,10:393.
[28]YU J H, CHENG Y, FENG K, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses[J]. Frontiers in Plant Science,2016,7:1215.
[29]MUTHUSAMY S K, DALAL M, CHINNUSAMY V, et al. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat[J]. Journal of Plant Physiology,2017,211:100-113.
[30]QI H H, CHEN X K, LUO S, et al. Genome-wide identification and characterization of heat shock protein 20 genes in maize[J]. Life,2022,12(9):1397.
[31]KIM D H, XU Z Y, HWANG I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling[J]. Plant Cell Reports,2013,32(12):1953-1963.
[32]KIM D H, XU Z Y, NA Y J, et al. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis[J]. Plant Physiology,2011,157(1):132-146.
[33]GUAN J C, JINN T L, YEH C H, et al. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2004,56(5):795-809.
[34]郭虹霞,王创云,赵丽,等. 水稻中2个小分子热激蛋白基因启动子的序列分析及功能鉴定[J]. 西北农业学报,2019,28(7):1079-1086.
[35]SATO Y, YOKOYA S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein,sHSP17.7[J]. Plant Cell Reports,2008,27(2):329-334.
[36]SARKAR N K, KOTAK S, AGARWAL M, et al. Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings[J]. Planta,2019,251(1):26.
[37]CHEN X H, LIN S K, LIU Q L, et al. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2014,1844(4):818-828.
[38]缪乐怡,范金岚,詹嘉涛,等. 水稻小分子热激蛋白基因Os02g0782500对逆境胁迫和激素的响应分析[J]. 广东农业科学,2023,50(12):112-119.
[39]SINGH G, SARKAR N K, GROVER A. Hsp70,sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.)[J]. Physiological Plant,2021,173(4):2055-2067.
[40]KIM K H, ALAM I, KIM Y G, et al. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue[J]. Biotechnology Letters,2012,34(2):371-377.
[41]LUND A A, RHOADS D M, LUND A L, et al. In vivo modifications of the maize mitochondrial small heat stress protein,HSP22[J]. Journal of Biological Chemistry,2001,276(32):29924-29929.
[42]SUN W, BERNARD C, COTTE B V D, et al. At-HSP17.6A,encoding a small heat-shock protein in Arabidopsis,can enhance osmotolerance upon overexpression[J]. Plant J,2001,27(5):407-415.
[43]SUN L P, LIU Y, KONG X P, et al. ZmHSP16.9,a cytosolic class I small heat shock protein in maize (Zea mays),confers heat tolerance in transgenic tobacco[J]. Plant Cell Reports,2012,31(8):1473-1484.
[44]CHAUHAN H, KHURANA N, NIJHAVAN A, et al. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress[J]. Plant,Cell & Environment,2012,35(11):1912-1931.
[45]SHUKLA V, UPADHYAY R K, TUCKER M L,et al. Transient regulation of three clustered tomato class-I small heat-shock chaperone genes by ethylene is mediated by SlMADS-RIN transcription factor[J]. Scientific Reports,2017,7(1):6474.
[46]KUMAR M, BUSCH W, BIRKE H, et al. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis[J]. Molecular Plant,2009,2(1):152-165.
[47]李春子.烟草细胞质小分子热激蛋白HSP17.8基因的克隆及胁迫诱导表达特性分析[D]. 海口:海南大学,2010.
[48]LIU H C, LIAO H T, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environment,2011,34(5):738-751.
[49]GONG C, PANG Q Q, LI Z L, et al. Genome-wide identification and characterization of Hsf and Hsp gene families and gene expression analysis under heat stress in eggplant (Solanum melongema L.)[J]. Horticulturae,2021,7(6):149.
[50]CHARNG Y Y, LIU H C, LIU N Y, et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology,2007,143(1):251-262.
[51]NOVER L, BHARTI K, DRING P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress Chaperones,2001,6(3):177-189.
[52]YOSHIDA T, OHAMA N, NAKAJIMA J, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression[J]. Mol Genet Genomics,2011,286(5/6):321-332.
[53]SCHARF K D, BERBERICH T, EBERSBERGER I, et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):1014-1019.
[54]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences,2004,29(4):471-487.
[55]YASUDA H, SAGEHASHI Y, SHIMOSAKA E, et al. Generation of transgenic rice expressing heat shock protein genes under cool conditions[J]. Plant Biotechnology,2013,30(5):489-496.
[56]CHENG Q, ZHOU Y H, LIU Z W, et al. An alternatively spliced heat shock transcription factor,OsHSFA2dI,functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology,2015,17(2):419-429.
[57]WU N, YAO Y L, XIANG D H, et al. A MITE variation-associated heat-inducible isoform of a heat-shock factor confers heat tolerance through regulation of JASMONATE ZIM-DOMAIN genes in rice[J]. New Phytologist,2022,234(4):1315-1331.
[58]LI N, XU R, LI Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019,70:435-463.
[59]BASAK J, NITHIN C. Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting[J]. Frontiers in Plant Science,2015,6:1001.
[60]BALAZADEH S. A ‘hot’ cocktail:the multiple layers of thermomemory in plants[J]. Current Opinion in Plant Biology,2022,65:102147.
[61]STIEF A, ALTMANN S, HOFFMANN K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell,2014,26(4):1792-1807.
[62]GUAN Q M, LU X Y, ZENG H T, et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. The Plant Journal:for Cell and Molecular Biology,2013,74 5:840-851.
[63]CHANG C. Ethylene biosynthesis,perception,and response[J]. Journal of Plant Growth Regulation,2007,26(2):89-91.
[64]LIU X L, JI P, YANG H T, et al. Priming effect of exogenous ABA on heat stress tolerance in rice seedlings is associated with the upregulation of antioxidative defense capability and heat shock-related genes[J]. Plant Growth Regulation,2022,98(1):23-38.
[65]BI H H, ZHAO Y, LI H H, et al. Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(9):3121.
[66]HUANG Y C, NIU C Y, YANG C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology,2016,172(2):1182-1199.
[67]王华丽,陈宁,杜晗蔚,等. 高温胁迫下ABA调控sHSP26对玉米叶绿体的保护作用[J]. 河南农业大学学报,2019,53(6):831-838.
[68]王前前. 玉米热激转录因子ZmHsfA4α的抗旱功能研究[D].合肥:安徽农业大学,2017.
[69]王世威,屈仁军,彭佳铭,等. 丹参小分子热激蛋白SmHSP21.8基因克隆、诱导模式和原核表达[J]. 药学学报,2022,57(6):1909-1917.
[70]SUZUKI N, MILLER G, MORALES J, et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Current Opinion in Plant Biology,2011,14(6):691-699.
[71]KAYA H, TAKEDA S, KOBAYASHI M J, et al. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases[J]. Plant Journal,2019,98(2):291-300.
[72]REZAUL I M, FENG B, CHEN T, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[73]SANTIAGO J P, SHARKEY T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J]. Plant Cell Environment,2019,42(10):2759-2775.
[74]REZAUL I M, BAOHUA F, TINGTING C, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum,2019,165(3):644-663.
[75]HOLLAND C K, JEZ J M. Structural biology of jasmonic acid metabolism and responses in plants[M]. Grenchen:Springer International Publishing,2018:67-82.
[76]DING C K, WANG C Y, GROSS K C, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate[J]. Plant Science,2001,161(6):1153-1159.
[77]HAMILTON E W, COLEMAN J S. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuata (Solanaceae) when distant leaves are stressed[J]. American Journal of Botany,2001,88(5):950-955.
[78]CLARKE S M, CRISTESCU S M, MIERSCH O, et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana[J]. New Phytologist,2009,182(1):175-187.
[79]ZHU T, HERRFURTH C, XIN M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications,2021,12(1):4804.
[80]BAKSHI A, SHEMANSKY J M, CHANG C, et al. History of Research on the plant hormone ethylene[J]. Journal of Plant Growth Regulation,2015,34:809-827.
[81]MATTOO A K, UPADHYAY R K. Plant hormones:some glimpses on biosynthesis,signaling networks,and crosstalk[M]. Singapore:Springer Singapore,2019:227-246.
[82]YANG S F, HOFFMAN N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Biology,1984,35:155-189.
[83]KENDE H. Ethylene biosynthesis[J]. Annual Review of Plant Biology,1993,44:283-307.
[84]RAVANEL S, GAKIRE B, JOB D, et al. The specific features of methionine biosynthesis and metabolism in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(13):7805-7812.
[85]UPADHYAY R K, TUCKER M L, MATTOO A K. Ethylene and RIPENING INHIBITOR modulate expression of SlHSP17.7A,B class I small heat shock protein genes during tomato fruit ripening[J]. Frontiers in Plant Science,2020,11:975.
[86]HAN J P, XIE X X, ZHANG Y, et al. Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants[J]. Plant Physiological,2022,190(1):421-440.
[87]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology,2008,59:225-251.
[88]DU R, NIU S H, LIU Y, et al. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers[J]. Scientific Reports,2017,7(1):16637.
[89]LIU X, HOU X L. Antagonistic regulation of ABA and GA in metabolism and signaling pathways[J]. Front in Plant Science,2018,9:251.
[90]TOH S, IMAMURA A, WATANABE A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds[J]. Plant Physiology,2008,146(3):1368-1385.
[91]LUO L X, XIE Y L, YU S J, et al. The DnaJ domain-containing heat-shock protein NAL11 determines plant architecture by mediating gibberellin homeostasis in rice (Oryza sativa)[J]. New Phytologist,2023,237(6):2163-2179.
(责任编辑:陈海霞)