刘欣然 陈勇 李彩蓉 王威
[摘要] 细胞焦亡是一种新发现的与细胞凋亡和细胞坏死不同的程序性细胞死亡方式,其参与糖尿病肾病的发展过程。细胞焦亡通过焦孔素D和胱天蛋白酶(cysteinyl aspartate specific proteinase,caspase)-1依赖的经典信号通路、焦孔素D和caspase-11/4/5依赖的非经典信号通路、焦孔素E和caspase-3依赖的信号通路发生。在糖尿病肾病中,焦孔素E和caspase-3依赖的信号通路作为一种新发现的调控机制引起人们的广泛关注。本文主要综述焦孔素E介导的细胞焦亡在糖尿病肾病中的研究进展。
[关键词] 细胞焦亡;焦孔素E;胱天蛋白酶-3;糖尿病肾病
[中图分类号] R587.2 [文献标识码] A [DOI] 10.3969/j.issn.1673-9701.2024.13.024
糖尿病肾病(diabetic nephropathy,DN)是糖尿病中最常见、最严重的并发症之一,其主要临床表现为血糖水平升高并伴有进行性肾衰竭,可导致终末期肾病[1]。全球范围内,DN患病率随着糖尿病患病率的增长而迅速上升[2-3]。DN的发病机制涉及遗传因素、肾脏血流动力学异常、高血糖所致糖代谢紊乱、氧化应激、炎症反应和细胞自噬等[4-7]。研究证实,这些危险因素与细胞焦亡的发生密切相关,细胞焦亡与DN之间的相关性越来越受到学者关注。
细胞死亡包括细胞凋亡和细胞坏死两种方式,此过程中的死亡程序、生化机制和信号传导通路均有所不同[8-12]。细胞焦亡在机制上不同于其他类型的程序性细胞死亡形式。Cookson等[13]最早以“pyroptosis”描述细胞焦亡,“pyro”源自希腊语,意为着火或发热,而“ptosis”意为下降,以描述这种细胞死亡过程及其促炎性质。Rogers等[14]研究发现,胱天蛋白酶(cysteinyl aspartate specific proteinase,caspase)-3可诱导细胞凋亡,裂解焦孔素E(gasdermin E,GSDME)。本文對GSDME介导的细胞焦亡在DN中的研究进展进行综述。
1 细胞焦亡的主要分子机制
细胞焦亡主要有两种不同的激活通路。一种是焦孔素D(gasdermin D,GSDMD)通过激活caspase-1而被裂解,诱导产生质膜气孔,促进白细胞介素(interleukin,IL)-1β、IL-18等炎症因子的分泌,导致炎症介导的细胞焦亡[15]。衔接蛋白ASC或NLRC4与前体(pro)-caspase-1单体结合并发生二聚化,激活pro-caspase-1转化为成熟的caspase-1。同时,caspase-1可裂解GSDMD并激活失活pro-IL-1β转化为成熟的IL-1β。GSDMD被切割后,N端和C端结构域被分离,GSDMD的N端片段(gasdermin D N-terminal,GSDMD-NT)被释放。释放的GSDMD- NT通过识别并结合细胞膜上的磷脂分子在细胞膜上形成气孔,破坏细胞势能的穿透力,导致细胞肿胀、细胞膜孔形成、细胞膜破裂、细胞渗透性溶解、DNA裂解、炎症小体激活、细胞内容物和炎症因子被释放,引起严重的炎症反应,最终导致细胞焦亡[16-17]。IL-1β也可通过孔道从细胞中释放,引起严重的炎症反应,即经典细胞焦亡通路[18-20]。
另一种则是由Bergsbaken等[20]发现的非经典细胞焦亡通路,由革兰阴性菌脂多糖(lipopolysaccharide,LPS)绕过Toll样受体(toll-like receptor,TLR)4,直接诱导小鼠caspase-11或人caspase-4/5的激活,激活的caspase-4/5/11切割GSDMD,促进pro-IL-1β和pro-IL-18活化为成熟的IL-1β和IL-18。同样,GSDMD-NT在细胞膜上形成一个气孔,释放细胞内的IL-1β和IL-18,诱导细胞焦亡[21-23]。
2 GSDME与细胞焦亡的关系
GSDME属于焦孔素家族,具有质膜成孔活性,可诱导细胞焦亡[24]。GSDME于1998年首次发现于染色体7p15.3[25]。野生型GSDME有10个外显子,编码含496个氨基酸的蛋白质,分子量约55kDa[26]。GSDME在不同细胞和组织中的表达不同。人类GSDME通常在胎盘、心脏、大脑和肾脏中表达;而小鼠GSDME则在耳蜗、胸腺、结肠、肺脏、大脑、脾脏和小肠中表达[25,27]。
caspase-3是细胞凋亡的重要效应因子[28]。既往研究表明,caspase-3与细胞焦亡无关[29]。最新研究发现,化疗药物作为caspase-3的激活剂可将GSDME特异性裂解,切割成GSDME的N端片段(gasdermin E N-terminal,GSDME-NT)和GSDME的C端片段(gasdermin E C-terminal,GSDME-CT)。GSDME-NT在细胞膜上形成膜孔,可在caspase-3激活剂的作用下引发细胞死亡[24,30]。只有特异性细胞才能表达GSDME,caspase-3的激活驱动细胞凋亡程序转变为细胞焦亡[24]。GSDME的裂解可使细胞焦亡的促炎过程和凋亡的抗炎过程得以交叉[31]。GSDME可视为一个“分子开关”,其裂解状态决定细胞是发生焦亡还是凋亡。当GSDME高表达时,caspase-3可裂解GSDME引发细胞焦亡,反之则引发细胞凋亡。也有证据表明GSDME作用于caspase-3的下游和上游,连接内源性和外源性凋亡途径,并增加caspase-3的激活,从而在正反馈回路中发挥作用[32]。因此,GSDME的表达控制着细胞是通过凋亡还是焦亡发生死亡。在GSDME存在情况下,一些化疗药物可诱导caspase-3活化并通过细胞焦亡导致细胞死亡,因为细胞焦亡比凋亡发生得更快,并伴随大量促炎因子的释放[14]。
3 焦亡介导DN不同类型的肾细胞损伤
DN是一种发病机制复杂的慢性代谢性疾病,也是导致终末期肾病的主要因素之一[33]。根据流行病学调查数据预估,未来几十年内DN患者数量将进一步增加[34]。DN可引起肾小球肥大、足细胞丢失、系膜基质扩张等一系列异常变化[35]。炎症、纤维化、血流动力学改变、氧化应激和细胞凋亡是DN的主要特征。DN导致患者生活质量下降,生存时间缩短。研究表明细胞焦亡参与DN的发病过程,GSDME在肾脏组织中高表达。
3.1 内皮细胞损伤
GSDMD是DN中诱导细胞焦亡的关键蛋白。Gu等[36]在肾小球内皮细胞的研究中发现,高糖环境下GSDMD可导致内皮细胞焦亡,沉默GSDMD可抑制细胞焦亡,表明细胞焦亡可介导内皮细胞损伤。
3.2 足细胞损伤
足细胞对肾小球滤过屏障的正常功能至关重要,足细胞的损伤或丢失可导致蛋白尿。Cheng等[37]在DN小鼠的研究中发现,足细胞中caspase-11表达和GSDMD切割的增加与两种足细胞标志物nephrin、podocin的表达减少及足细胞足突的丢失和融合有关;在DN小鼠模型中,敲除caspase-11或GSDMD可减轻上述变化。与高糖处理的人足细胞的研究结果类似,用沉默RNA敲低caspase-4或GSDMD可显著降低caspase-4或GSDMD-NT的水平,同时可降低炎症因子和足细胞标志物的水平。上述研究表明,细胞焦亡可导致足细胞损伤,与DN的发展密切相关。
3.3 肾小球系膜细胞损伤
Zhan等[38]通过建立的DN大鼠模型研究DN肾小球系膜细胞损伤机制,发现DN发病过程中发生系膜细胞焦亡,上调长链非编码RNA(long noncoding RNA,lncRNA)NEAT1可促进焦亡相关蛋白的表达。
3.4 肾小管上皮细胞损伤
GSDMD通过多条通路造成肾小管上皮细胞损伤。TLR-4/核因子κB(nuclear factor-κB,NF-κB)是炎症的常见信号通路。Wang等[39]研究发现,抑制NF-κB可降低caspase-1、GSDMD-NT的表达水平,抑制IL-18和IL-1β的分泌。lncRNA通过调控人肾小管上皮细胞HK-2细胞中的微RNA表达,缓解DN的严重程度。Xie等[40]研究发现高糖处理的HK-2细胞中lncRNA GAS5表达降低,GAS5过表达可上调焦亡相关蛋白(GSDMD-NT、caspase-1、NLRP3和IL-1β)的表达。miR-452-5p干扰可产生与GAS5过表达相似的结果,GAS5抑制可逆转miR-452-5p的干扰作用。综上,lncRNA GAS5/miR-452-5p轴可调控高糖诱导的肾小管细胞焦亡。
4 GSDME介导的细胞焦亡具有靶向DN的潜力
2017年,Rogers等[14]首次报道化疗药物可特异性裂解GSDME,从而产生GSDME-NT,在质膜上形成孔,并产生细胞焦亡。caspase-3是一种促凋亡caspase,也负责GSDME的切割,而GSDME的状态决定细胞是发生细胞焦亡还是细胞凋亡。多项研究表明GSDME表达正常的人原代细胞(表皮角质形成细胞、胎盘上皮细胞和脐动脉平滑肌细胞)和肿瘤细胞(神经母细胞瘤、皮肤黑色素瘤和胃癌细胞)亦可发生细胞焦亡[24,41-42]。据报道,1/3的肿瘤患者在使用化疗药物时可产生肾毒性,这限制了化疗药物的临床应用[43-44]。Shen等[45]研究证明化疗药物(顺铂或多柔比星)诱导的肾小管上皮细胞焦亡是由ROS/JNK/caspase-3/GSDME信号通路介导的。抑制caspase-3可阻断GSDME裂解为GSDME-NT,改善顺铂诱导的细胞焦亡和肾功能障碍[46]。除炎症疾病外,细胞焦亡也在纤维化疾病中发挥作用。Li等[47]对梗阻性肾病的研究表明,caspase-3/GSDME介导的细胞焦亡发生在肾实质中。细胞焦亡与输尿管梗阻引起的肾小管损伤有关,可加重肾积水、炎症和纤维化。caspase-3或GSDME的缺失可减轻肾小管损伤、炎症、肾积水和肾纤维化。此外,有报道称GSDME介导的细胞焦亡可促进LPS诱导的斑马鱼急性肾损伤和斑马鱼幼鱼肾小管细胞损伤;敲除GSDME基因可阻断LPS诱导的上述损伤[31]。近期的一项研究揭示GSDME在人肾小管细胞中提供肾保护的潜在机制。Wen等[48]研究表明caspase-3抑制劑Z-DEVD-FMK可减少糖尿病小鼠的蛋白尿,改善肾功能,阻断肾小管间质纤维化,推测其原因可能通过抑制GSDME保护肾功能。肾脏炎症和纤维化在诱导DN的过程中起至关重要的作用[49]。最新研究表明,在Ⅰ型DN的SD大鼠模型中,caspase-3裂解GSDME诱发细胞焦亡、增加IL-1β是DN的发病机制之一[50]。上述研究表明caspase-3/GSDME引发的细胞焦亡可诱导肾损伤、炎症和纤维化。
5 GSDME抑制剂
caspase-3/GSDME依赖性细胞焦亡发生在DN的发生发展过程中。在高糖处理的HK-2细胞中应用Z-DEVD-FMK可抑制细胞焦亡和纤维生成[51]。GSDME衍生抑制剂Ac-DMPD/DMLD-CMK可显著抑制caspase-3的活化并降低下游效应蛋白GSDME的水平,从而防止细胞凋亡和细胞焦亡的发生[52]。综上所述,GSDME抑制剂对研究GSDME介导的细胞焦亡有十分重要的意义,可为GSDME介导DN的研究提供有力依据。
6 小结与展望
细胞焦亡促进肾脏细胞的损伤和DN的发展,主要途径包括caspase-1介导的经典细胞焦亡通路和caspase-4/5/11介导的非典型细胞焦亡通路。caspase-3/GSDME依赖性细胞焦亡是近年来新发现的焦亡途径。随着人们对GSDME研究的不断深入,GSDME也为DN研究提供新的思路。但目前GSDME在DN领域的相关研究较少,需进一步研究以探索其在DN发生发展中的作用。GSDME的研究将为DN的治疗提供新的靶点。
利益沖突:所有作者均声明不存在利益冲突。
[参考文献]
[1] VALENCIA W M, FLOREZ H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control[J]. BMJ, 2017, 356: i6505.
[2] GHEITH O, FAROUK N, NAMPOORY N, et al. Diabetic kidney disease: World wide difference of prevalence and risk factors[J]. J Nephropharmacol, 2015, 5(1): 49–56.
[3] STENVINKEL P. Chronic kidney disease: A public health priority and harbinger of premature cardiovascular disease[J]. J Intern Med, 2010, 268(5): 456–467.
[4] AHMAD J. Management of diabetic nephropathy: Recent progress and future perspective[J]. Diabetes Metab Syndr, 2015, 9(4): 343–358.
[5] HOVIND P, TARNOW L, ROSSING P, et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: Inception cohort study[J]. BMJ, 2004, 328(7448): 1105.
[6] ADLER A I, STEVENS R J, MANLEY S E, et al. Development and progression of nephropathy in type 2 diabetes: The United Kingdom prospective diabetes study (UKPDS 64)[J]. Kidney Int, 2003, 63(1): 225–232.
[7] VALMADRID C T, KLEIN R, MOSS S E, et al. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus[J]. Arch Intern Med, 2000, 160(8): 1093–1100.
[8] STROWIG T, HENAO-MEJIA J, ELINAV E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481(7381): 278–286.
[9] SOENGAS M S, ALARC?N R M, YOSHIDA H, et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition[J]. Science, 1999, 284(5411): 156–159.
[10] PASPARAKIS M, VANDENABEELE P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534): 311–320.
[11] WALLACH D, KANG T B, DILLON C P, et al. Programmed necrosis in inflammation: Toward identification of the effector molecules[J]. Science, 2016, 352(6281): aaf2154.
[12] LEVINE B, MIZUSHIMA N, VIRGIN H W. Autophagy in immunity and inflammation[J]. Nature, 2011, 469(7330): 323–335.
[13] COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113–114.
[14] ROGERS C, FERNANDES-ALNEMRI T, MAYES L, et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death[J]. Nat Commun, 2017, 8: 14128.
[15] SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660–665.
[16] MAN S M, KARKI R, KANNEGANTI T D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61–75.
[17] WANG J, SAHOO M, LANTIER L, et al. Caspase-11- dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18[J]. PLoS Pathog, 2018, 14(5): e1007105.
[18] LIU X, ZHANG Z, RUAN J, et al. Inflammasome- activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153–158.
[19] LIANG H, LIU Y. Gasdermins pore cell membrane to pyroptosis[J]. Sci China Life Sci, 2016, 59(10): 1090–1092.
[20] BERGSBAKEN T, FINK S L, COOKSON B T. Pyroptosis: Host cell death and inflammation[J]. Nat Rev Microbiol, 2009, 7(2): 99–109.
[21] SHI J, ZHAO Y, WANG Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521): 187–192.
[22] SHI J, GAO W, SHAO F. Pyroptosis: Gasdermin- mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245–254.
[23] HAGAR J A, POWELL D A, AACHOUI Y, et al. Cytoplasmic LPS activates caspase-11: Implications in TLR4-independent endotoxic shock[J]. Science, 2013, 341(6151): 1250–1253.
[24] WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99–103.
[25] VAN LAER L, HUIZING E H, VERSTREKEN M, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5[J]. Nat Genet, 1998, 20(2): 194–197.
[26] GREGAN J, VAN LAER L, LIETO L D, et al. A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment[J]. Biochim Biophys Acta, 2003, 1638(2): 179–186.
[27] WU C, OROZCO C, BOYER J, et al. BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources[J]. Genome Biol, 2009, 10(11): R130.
[28] TAIT S W, GREEN D R. Mitochondria and cell death: Outer membrane permeabilization and beyond[J]. Nat Rev Mol Cell Biol, 2010, 11(9): 621–632.
[29] KROEMER G, GALLUZZI L, VANDENABEELE P, et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009[J]. Cell Death Differ, 2009, 16(1): 3–11.
[30] FANG Y, TIAN S, PAN Y, et al. Pyroptosis: A new frontier in cancer[J]. Biomed Pharmacother, 2020, 121: 109595.
[31] WANG Z, GU Z, HOU Q, et al. Zebrafish GSDMEb cleavage-gated pyroptosis drives septic acute kidney injury in vivo[J]. J Immunol, 2020, 204(7): 1929–1942.
[32] JIANG M, QI L, LI L, et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer[J]. Cell Death Discov, 2020, 6: 112.
[33] ILYAS Z, CHAIBAN J T, KRIKORIAN A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy[J]. Rev Endocr Metab Disord, 2017, 18(1): 21–28.
[34] SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
[35] ALICIC R Z, ROONEY M T, TUTTLE K R. Diabetic kidney disease: Challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12): 2032–2045.
[36] GU J, HUANG W, ZHANG W, et al. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis[J]. Int Immunopharmacol, 2019, 75: 105832.
[37] CHENG Q, PAN J, ZHOU Z L, et al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy[J]. Acta Pharmacol Sin, 2021, 42(6): 954–963.
[38] ZHAN J F, HUANG H W, HUANG C, et al. Long non-coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 axis[J]. Kidney Blood Press Res, 2020, 45(4): 589–602.
[39] WANG Y, ZHU X, YUAN S, et al. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease[J]. Front Endocrinol (Lausanne), 2019, 10: 603.
[40] XIE C, WU W, TANG A, et al. LncRNA GAS5/miR- 452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells[J]. Diabetes Metab Syndr Obes, 2019, 12: 2609–2617.
[41] WANG Y, YIN B, LI D, et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun, 2018, 495(1): 1418–1425.
[42] WANG Y, ZHANG X, WANG P, et al. Sirt3 overexpression alleviates hyperglycemia-induced vascular inflammation through regulating redox balance, cell survival, and AMPK-mediated mitochondrial homeostasis[J]. J Recept Signal Transduct Res, 2019, 39(4): 341–349.
[43] IZZEDINE H. Drug nephrotoxicity[J]. Nephrol Ther, 2018, 14(3): 127–134.
[44] VOLAREVIC V, DJOKOVIC B, JANKOVIC M G, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity[J]. J Biomed Sci, 2019, 26(1): 25.
[45] SHEN X, WANG H, WENG C, et al. Caspase 3/GSDME- dependent pyroptosis contributes to chemotherapy drug- induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186.
[46] XIA W, LI Y, WU M, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139.
[47] LI Y, YUAN Y, HUANG Z X, et al. GSDME-mediated pyroptosis promotes inflammation and fibrosis in obstructive nephropathy[J]. Cell Death Differ, 2021, 28(8): 2333–2350.
[48] WEN S, WANG Z H, ZHANG C X, et al. Caspase-3 promotes diabetic kidney disease through gasdermin E-mediated progression to secondary necrosis during apoptosis[J]. Diabetes Metab Syndr Obes, 2020, 13: 313–323.
[49] WADA J, MAKINO H. Innate immunity in diabetes and diabetic nephropathy[J]. Nat Rev Nephrol, 2016, 12(1): 13–26.
[50] 李勝玉. GSDME诱导的细胞焦亡在糖尿病肾病中的作用研究[D]. 天津: 天津医科大学, 2019.
[51] SETYANINGSIH W A W, ARFIAN N, FITRIAWAN A S, et al. Ethanolic extract of centella asiatica treatment in the early stage of hyperglycemia condition inhibits glomerular injury and vascular remodeling in diabetic rat model[J]. Evid Based Complement Alternat Med, 2021, 2021: 6671130.
[52] XU W F, ZHANG Q, DING C J, et al. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure[J]. Acta Pharmacol Sin, 2021, 42(1): 68–76.
(收稿日期:2023–06–27)
(修回日期:2024–04–15)