川南地区五峰组—龙马溪组沉积环境演化及其对页岩发育的控制

2024-05-13 07:11:18韩豫操应长梁超吴伟朱逸青武瑾赵梓龙唐晴
关键词:纹层

韩豫 操应长 梁超 吴伟 朱逸青 武瑾 赵梓龙 唐晴

收稿日期:2023-02-05

基金項目:国家自然科学基金项目(42172165,41902134);中央高校基本科研业务费专项(22CX06001A);泰山学者计划(TSQN201812030)

第一作者:韩豫(1991-),男,博士研究生,研究方向为沉积学。E-mail: b20010017@s.upc.edu.cn。

通信作者:操应长(1969-),男,教授,博士,研究方向为沉积学和油气储层地质学。E-mail: caoych@upc.edu.cn。

梁超(1986-),男,教授,博士,研究方向为细粒沉积学。E-mail: liangchao0318@163.com。

文章编号:1673-5005(2024)02-0011-13    doi:10.3969/j.issn.1673-5005.2024.02.002

摘要:基于岩心观察、薄片观察、电镜观察、XRF元素扫描以及全岩X-衍射、ICP-MS元素分析、总有机碳含量测试等手段,对川南地区五峰组—龙马溪组页岩岩相类型及其沉积环境演化进行分析,并探讨沉积环境高频演化对岩相的控制作用。将川南地区五峰组—龙马溪组页岩划分为富有机质层状生物硅质页岩、富有机质纹层状(长英质-钙质)粉砂页岩、富有机质(钙质)粉砂页岩、富有机质纹层状钙质页岩、中有机质纹层状(长英质-钙质)粉砂页岩、中有机质块状黏土质页岩6种岩相类型。在岩相识别基础上借助特征元素比值Sr/Ba、U/Th、V/Cr、V/Ni、Ni/Co、Sr/Cu及Mo、Cu、Sr含量变化进行古沉积环境恢复,划分出7个演化阶段。结果表明:五峰组沉积早期气候温暖潮湿、水体较为氧化、盐度较低;五峰组沉积中期水体还原性增强、古生产力提高;五峰组晚期气候干冷,水体较为氧化,经历了赫南特冰期;龙马溪组自下而上古气候经历了暖湿—相对干热—暖湿—相对干热的演化,同时古水体也经历了还原—相对氧化—还原—相对氧化的演化。沉积环境高频演化对页岩岩相发育以及有机质富集具有明显的控制作用,不同岩相有机质含量与海洋古生产力和水体还原性均呈现良好的正相关性,其中在古生产力较高、水体还原性较强的阶段沉积的富有机质层状生物硅质页岩和富有机质纹层状(长英质-钙质)粉砂页岩有机质最为富集,且石英含量最高,是页岩气勘探开发的优势岩相。

关键词:页岩岩相; 纹层; 沉积环境演化; 有机质富集; 五峰组—龙马溪组

中图分类号:P 586    文献标志码:A

引用格式:韩豫,操应长,梁超,等.川南地区五峰组—龙马溪组沉积环境演化及其对页岩发育的控制[J].中国石油大学学报(自然科学版),2024,48(2):11-23.

HAN Yu, CAO Yingchang, LIANG Chao, et al. Sedimentary environment evolution of Wufeng Formation-Longmaxi Formation and its control on shale deposition in the southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2):11-23.

Sedimentary environment evolution of Wufeng Formation-Longmaxi Formation and its control on shale deposition in the southern Sichuan Basin

HAN Yu1,2, CAO Yingchang1,2, LIANG Chao1,2, WU Wei3, ZHU Yiqing3, WU Jin4, ZHAO Zilong2, TANG Qing2

(1.Key Laboratory of Deep Oil and Gas in China University of Petroleum(East China), Qingdao 266580, China;

2.School of Geosciences in China University of Petroleum(East China), Qingdao 266580, China;

3.Shale Gas Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China;

4.PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China)

Abstract: Based on core observation, thin section analysis, electron microscope examination, XRF scanning, whole rock X-ray diffraction, ICP-MS analysis, and total organic carbon content measurement, we analyzed the shale facies types and sedimentary environment evolution of Wufeng-Longmaxi Formation in southern Sichuan area, and discussed the controlling effect of high-frequency sedimentary environment evolution on lithofacies. The Wufeng-Longmaxi shale in southern Sichuan area can be divided into six lithofacies types: organic-rich layered biosiliceous shale, organic-rich laminated (felsic-calcareous) silty shale, organic-rich (calcareous) silty shale, organic-rich laminated calcareous shale, medium-organic laminated (felsic-calcareous) silty shale, and medium-organic massive mudstone. The paleo-sedimentary environment is reconstructed utilizing characteristic element ratios Sr/Ba, U/Th, V/Cr, V/Ni, Ni/Co, Sr/Cu, as well as the content of Mo, Cu, Sr, and seven evolutionary stages are delineated: the lower Wufeng Formation deposited under warm,humid conditions, with relatively oxidized,low salinity water; the upper Wufeng Formation witnessed increased water reduction and enhanced paleoproductivity. The top of the Wufeng Formation experienced mass extinction during the Hirnantian glaciation, characterizedby arid and cold paleoclimate. From bottom to top, the paleoclimates of Longmaxi Formation experienced the evolution of "warm/wet"-"relatively arid/hot"-"warm/wet"-"relatively arid/hot" and the ancient water body also experienced the evolution from reduction to relative oxidation. The sedimentary environment significantly influences shale lithofacies and organic matter enrichment. The content of organic matter in different lithofacies is positively correlated with marine paleoproductivity and water reducibility. Organic-rich layered biosiliceous shale and organic-rich laminated (felsic-calcareous) silty shale, deposited during stages of high paleoproductivity and strong water reduction, display abundant organic matter and  high quartz content, making them favorable targets for shale gas exploration and development. This study provides a theoretical foundation for further exploration and development of shale gas and the investigation of fine-grained sedimentary rocks.

Keywords: shale lithofacies; laminae; sedimentary environment evolution; organic matter accumulation; Wufeng Formation-Longmaxi Formation

近年来,中国海相页岩气勘探开发已在四川盆地获得巨大突破,已建成全球除北美地区之外最大的页岩气生产基地[1-3]。四川盆地页岩气资源潜力巨大,2020年五峰组—龙马溪组页岩气产量达200.4×108 m3,截至2023年四川盆地页岩气已探明地质储量达3.14×1012m3[4]。页岩岩相垂向高频演化、优势岩相时空分布差异性大,是目前“甜点段”勘探需要面临的挑战[5-6]。页岩的沉积与其沉积环境密不可分,而沉积环境的演化受到一系列复杂因素的控制,包括盆地构造背景、沉积物供给、古气候、水体盐度、水体氧化还原状态等[7-8]。页岩沉积物的形成对沉积环境变化十分敏感,且沉积环境具有垂向高频演化的特点,然而目前对页岩沉积环境高频演化特征及其对岩相控制作用的研究仍相对较少。晚奥陶世—早志留世期间,地表沉积环境演化复杂,经历了冰川事件、生物绝灭、火山喷发等一系列地质事件[9-10],全球广泛发育黑色页岩,其中五峰组—龙马溪组沉积厚度大、生物化石笔石带保存完整[11-12],是研究该时期古沉积环境演化、页岩岩相特征及成因的良好载体。页岩岩相具有类型复杂、垂向高频演变的特点[13],其背后是沉积环境经历了高频演化,厘清这种沉积环境高频演变的过程并阐明其对页岩岩相发育的控制,对于细粒沉积岩沉积规律的研究具有重要意义[12]。笔者通过岩心观察、薄片观察、电镜观察、XRF元素扫描以及全岩X-衍射、ICP-MS元素分析、总有机碳含量(TOC)测试等手段对川南地区五峰组—龙马溪组页岩岩相类型及其沉积环境演化进行分析,并探讨沉积环境高频演化对岩相的控制作用。

1  区域地质概况

四川盆地位于中国西南部(图1)[14],是扬子板块内的一个次级克拉通盆地,在晚奥陶世扬子板块处于冈瓦纳大陆北缘的赤道海域[15]。东南部华夏板块的汇聚挤压作用使得扬子地台南缘的黔中、雪峰古隆起发生抬升,并与西南缘的康滇古陆相连形成滇黔桂古陆;同时北部的被动大陆边缘向华北板块俯冲挤压,板块西缘的川中古隆起范围也不断扩大,扬子地块形成了“三隆夹一坳”的构造格局,大部分中上扬子海域被古隆起围限,成为半封闭、低能的局限海盆[16]。

奥陶纪早期,扬子地区沉积大套海相碳酸盐岩,至晚奥陶世发育了五峰组黑色富有机质页岩,其硅质含量高,并含有丰富的笔石、放射虫、海绵骨针等化石[17-19]。在晚奥陶世—早志留世之交,由于赫南特冰期的影响,海平面大幅度下降,四川盆地沉积了一层生物介壳灰岩“观音桥段”,其富含底栖赫南特动物群[20]。早志留世中上扬子地区广泛发育了龙马溪组深灰色—黑色富有机质页岩,龙马溪组下部硅质含量高,向上由于构造抬升作用水体变浅,砂质含量上升、笔石化石减少[21]。另外五峰组和龙马溪组内部均发育多层薄层凝灰岩。

2  岩相类型及特征

2.1  组分特征

川南地区五峰组—龙马溪组页岩矿物组成主要为石英、黏土矿物、方解石、白云石、长石和黄铁矿(图2)。其中石英含量最高,质量分数平均为42.7%,最高可达71.7%。石英来源较为复杂,有陆源输入带来的外源石英,呈不规则棱角状,粒径20~50  μm(图3(a));有生物化石(硅质海绵骨针、硅质放射虫)成因的石英,呈隐晶质,粒度50~200  μm(图3(b));以及成岩阶段形成粒状微晶石英,粒度小于20  μm(图3(b))。方解石质量分数为2.9%~15.6%,平均为 8.9%,以不规则颗粒状或成岩作用形成的亮晶方解石纹层形式存在(图3(d),(e));白云石质量分数为3.5%~42.2%,平均为15.1%,自形程度较高(图3(f));长石质量分数为1.6%~6.8%,平均为3.6%,以陆源输入的斜长石为主,呈不规则棱角状,粒径20~50  μm,可見聚片双晶(图3(g));黏土矿物质量分数为11.4%~61.1%,平均为25.7%,主要为伊蒙混层、伊利石和绿泥石(图3(h));黄铁矿质量分数为1.3%~17.7%,平均为4.6%,以草莓状黄铁矿集合体和自形颗粒状存在(图3(i))。研究区五峰组—龙马溪组页岩TOC较高,质量分数为2%~9.25%,平均为4.72%。

2.2  页岩岩相类型

研究区岩相类型以富硅质页岩为主,且硅质来源复杂,有陆源碎屑石英、生物化石成因的石英及自生微晶石英,此外还存在灰岩(五峰组顶部生物介壳灰岩、重力滑塌形成的泥灰岩)、广泛分布的凝灰岩以及龙马溪组上部分布的粉砂岩等。本文中以五峰组—龙马溪组的页岩为研究对象,对页岩组分构成、沉积结构、纹层特征进行分析,参考石英+长石、碳酸盐矿物和黏土矿物的三端元划分方案并结合石英、碳酸盐矿物的不同来源,以有机质质量分数为2%和4%为中有机质和富有机质界线,将研究区页岩划分为富有机质层状生物硅质页岩、富有机质纹层状(长英质-钙质)粉砂页岩、富有机质(钙质)粉砂页岩、富有机质纹层状钙质页岩、中有机质纹层状(长英质-钙质)粉砂页岩和中有机质块状黏土质页岩共6种岩相(表1)。

2.2.1  富有机质层状生物硅质页岩(BS)

富有机质层状生物硅质页岩手标本颜色较深,一般为黑色—灰黑色,硬度较大,硅质生物(主要为硅质放射虫和海绵骨针)富集成层,层厚0.1~2 cm不等,对岩心进行XRF元素扫描可见其Si元素含量明显高于上下层(图4(a))。生物硅质层上下为富有机质黏土层,生物硅质层与富有机质黏土层的界面呈现突变接触(图4(b))。镜下可见放射虫化石由隐晶质石英构成(图4(c))。该岩相硅质含量较高,石英质量分数往往大于50%,可高达71.7%,平均为60.7%,黏土矿物质量分数平均为17.6%,碳酸盐矿物质量分数平均为16.9%,有机质含量较高,TOC平均为6.36%。该类岩相主要发育在研究区龙马溪组底部。

2.2.2  富有机质纹层状(长英质-钙质)粉砂页岩(LS-1)

富有机质纹层状(长英质-钙质)粉砂页岩颜色多为深灰色,硬度相对较大,手标本和岩心XRF元素扫描图像可见水平层理(图4(d))。镜下可见纹层发育较好,主要为亮色的石英-方解石混积纹层和暗色的富有机质黏土纹层的纹层组合(图4(e))。其中石英-方解石混合纹层厚度100~500 μm,石英、长石以碎屑颗粒为主,呈现棱角状,粒径20~50 μm,方解石颗粒亦呈碎屑颗粒形状,粒径50~100 μm(图4(f));富有机质黏土纹层颜色较暗,厚度200~500 μm,主要为有机质和黏土矿物的混合,可见黄铁矿颗粒或草莓状黄铁矿集合体。该岩相硅质含量仍然较高,平均为49.58%,黏土矿物次之,平均为24.1%,碳酸盐质量分数平均为18.28%,黄铁矿质量分数平均为4.5%,有机质含量较高,TOC平均为5.5%。该类岩相主要发育在龙马溪组底部和中部。

2.2.3  富有机质(钙质)粉砂页岩(CS)

富有机质(钙质)粉砂页岩手标本层理不可见(图5(a)),XRF元素扫描图像可见微弱层理(图5(b))。镜下纹层模糊或不发育,石英、方解石、长石均呈现碎屑颗粒外形,分选较好,粒径50~100 μm,白云石颗粒自形程度较好(图5(c))。该岩相石英质量分数平均为27.29%,碳酸盐矿物含量较高,质量分数平均为39.13%,黏土矿物质量分数平均为23.27%,黄铁矿质量分数平均为7.46%,TOC平均为4.68%。该类岩相主要发育在五峰组上部和龙马溪组中下部。

2.2.4  富有机质纹层状钙质页岩(LC)

富有机质纹层状钙质页岩颜色多为灰黑色,手标本可见清晰的浅色亮晶方解石层平行顺层分布(图5(d)),XRF扫描图像可见Ca元素富集薄层(图5(e))。镜下可见纹层发育较好,主要为浅色的亮晶方解石纹层和暗色的富有机质黏土纹层的纹层组合。其中亮晶方解石纹层厚度100~200 μm,由成岩作用形成的纤柱状方解石构成(图5(f));富有机质黏土纹层颜色较暗,可见石英颗粒(粒径10~

20 μm)悬浮分布其中。该岩相石英质量分数平均为50.7%,碳酸盐矿物质量分数平均为20.5%,黏土矿物质量分数平均为19.17%,黄铁矿质量分数平均为5.87%,TOC平均为5.47%。该类岩相主要发育在龙马溪组中部。

2.2.5  中有机质纹层状(长英质-钙质)粉砂页岩(LS-2)

中有机质纹层状(长英质-钙质)粉砂页岩与LS-1岩相特征相似,颜色多为灰色—深灰色(图6(a)),XRF元素扫描图像可见水平层理(图6(b))。镜下可见纹层发育较好,主要为亮色的石英-方解石混合纹层和暗色的含有机质黏土纹层的纹层组合(图6(c))。石英、长石、方解石呈现碎屑颗粒形状,偶见黄铁矿颗粒或草莓状黄铁矿集合体。该岩相石英质量分数平均为36%,碳酸盐矿物质量分数平均为21.1%,黏土矿物质量分数平均为34.9%,黄铁矿质量分数平均为3.84%,有机质含量下降,TOC平均為2.82%。该类岩相主要发育在龙马溪组中上部。

2.2.6  中有机质块状黏土质页岩(MM)

中有机质块状黏土质页岩颜色多为灰黑色,硬度较小,块状构造(图6(d))。镜下纹层不发育(图6(e)),可见黏土矿物絮凝团块,絮凝团块呈现透镜状,尺寸一般为150 μm×50 μm,团块内由黏土矿物、石英、方解石组成,内部颗粒粒径在2~20 μm,多小于10 μm(图6(f))。该岩相黏土矿物质量分数较高,平均为50%,主要为伊利石、伊蒙混层和少量绿泥石,石英质量分数平均为33.7%,碳酸盐矿物质量分数较低,平均为9.55%,黄铁矿质量分数较低,平均为1.7%,TOC平均为2.58%。该类岩相主要发育在五峰组下部和龙马溪组上部。

2.3  岩相垂向序列

以W213井为例,根据矿物含量以及TOC变化,对岩相的垂向演变进行了分析(图7)。五峰组下部黏土矿物含量较高,大于50%,石英含量平均为33.7%,方解石、白云石、长石均较少,TOC较低,主要发育岩相MM;五峰组上部石英、方解石、白云石含量上升,黏土矿物含量下降,主要发育岩相CS;五峰组顶部在赫南特冰期下经历生物大灭绝,沉积了一层生物介壳灰岩;龙马溪组底部石英质量分数升至平均61.9%,黏土矿物质量分数降至平均18.6%,TOC达到峰值,平均为7.69%,主要发育岩相BS和LS-1;向上石英质量分数降至平均26.6%,方解石质量分数增至平均12.8%,白云石质量分数平均29.1%,TOC降至平均4.7%,主要发育岩相CS;向上石英质量分数增至平均44.6%,方解石质量分数降至平均8.7%,白云石质量分数降至平均16%,TOC略有升高,主要发育岩相BS、LS-1和CS;龙马溪组上部石英质量分数下降至平均40.5%,黏土矿物质量分数升至31.6%,TOC降至2.06%,主要发育岩相LS-2和LC。

3  沉积环境演化

3.1  古沉积环境恢复

古生产力高低的判别可借助于Mo、Cu等元素含量,研究发现海相黑色页岩中Mo主要与富硫无定形有机质结合在一起沉淀下来[22],Cu可以有机金属络合物的形式保留在沉积物中[23],因而Mo、Cu含量越高,表明古生产力越高。五峰组—龙马溪组Cu、Mo含量具有一致的变化特征,整体古生产力较高,Mo含量平均56.1 μg/g,在龙马溪组底部达到峰值,Mo含量达184 μg/g,到龙马溪组中上部Mo含量逐渐下降至20 μg/g以下(图8)。

古气候条件的判识可借助于Sr和Cu的含量变化及比值,Sr元素更易于在干燥条件下沉积而Cu元素更易于在潮湿环境下保存[24],故Sr含量和Sr/Cu比值升高指示了更为干燥的古气候条件。五峰组沉积时古气候较为暖湿,Sr/Cu比值平均1.28,五峰组顶部于赫南特冰期沉积了一层生物介壳灰岩(观音桥段),此时古气候较为干冷,龙马溪组沉积时古气候体现出暖湿—相对干热—暖湿—相对干热的阶段性变化。

古盐度高低的判别常用Sr和Ba含量比值来指示,Sr相对于Ba具有更大的活动性,在搬运过程中不易被吸附或形成化学沉淀,而Ba更易被黏土矿物、有机质等吸附[25],随盐度增大,Sr才得以沉淀,因而Sr/Ba比值与古盐度具有一定的正相关性。五峰组—龙马溪组Sr/Ba比值变化幅度小,在0.08~0.33,平均为0.16,整体具有稳定的古盐度。

水体氧化还原性变化可以通过U/Th、V/Cr、V/Ni以及Ni/Co等比值进行判识。Th在地表不易发生迁移,而U在还原水体中易以四价态离子的形式沉淀[26]; V往往在还原条件下以四价态的形式与有机质结合,而Cr往往富集于陆源碎屑中;随水体还原性增强,V相比于Ni更易于被吸附而沉淀[27];Ni与Co均与黄铁矿相结合而沉淀,且其比值大于1[28],因此随着水体还原性增强,U/Th、V/Cr、V/Ni以及Ni/Co比值均会升高。五峰组下部沉积时水体还原性较弱,U/Th比值平均0.45,五峰组上部以及龙马溪组下部古还原性均较强,U/Th比值大于2,向上还原性逐渐减弱,U/Th比值降至0.5以下。

3.2  沉积环境演化

本文中选取川南地区W213井38块样品通过ICP-MS获取Mo、Cu、Sr、Ba、U、Th、V、Cr、Ni、Co等元素含量,通过上述地球化学元素指标并结合岩相类型变化,将W213井五峰组—龙马溪组页岩的沉积环境演化划分为7个阶段,其中五峰组3个演化阶段,龙马溪组4个演化阶段(图8)。

阶段Ⅰ:五峰组沉积早期,Sr/Cu比值平均1.28,指示此时处于温暖湿润的气候;Sr/Ba比值平均为0.09,指示此时水体古盐度较低;U/Th比值小于0.5,指示此时水体为富氧的氧化环境;此时Mo含量平均为2.22 μg/g,表明古生产力相对较低;TOC约为2%,主要发育中有机质块状黏土质页岩。阶段Ⅱ:五峰组沉积中期气候温暖潮湿,水体还原性增强,古生产力升高,TOC大于4%,主要发育富有机质(钙质)粉砂页岩。阶段Ⅲ:五峰组沉积晚期整体处于寒冷干燥的气候,属于赫南特冰期,水体古盐度整体较低,水平面下降,水体处于氧化环境,此时TOC较低,主要发育富含赫南特贝的生物介壳灰岩。阶段Ⅳ:龙马溪组沉积早期,Sr/Cu比值平均为1.2,指示此时处于温暖湿润的气候;Sr/Ba比值平均为0.1,表明此时水体古盐度较低;U/Th>1.25,Ni/Co>7,V/Cr>4.25,均指示水体处于缺氧的还原环境,此时冰期结束水体较深;Mo含量平均为110.8 μg/g,最高可达184 μg/g,指示此时古生产力较高;TOC较高,在5%~10%,该阶段主要发育富有机质层状生物硅质页岩和富有机质(长英质-钙质)粉砂页岩。阶段Ⅴ:龙马溪组沉积早中期古气候由温湿向干热转化,Sr/Cu比值升至4.87;Sr/Ba比值升至0.33,表明古盐度逐渐升高;U/Th、Ni/Co、V/Cr比值减小,指示水体还原性减弱,水深变浅;Mo含量降至60.7 μg/g,表明古生产力降低,该阶段主要发育富有机质(长英质-钙质)粉砂页岩和富有机质(钙质)粉砂页岩。阶段Ⅵ:龙马溪组沉积中期,Sr/Cu比值下降至1.3,指示此时气候温暖潮湿;水体古盐度变化不明显;U/Th>1.25,Ni/Co比值在5~8,V/Cr比值为4~5,指示此时水体缺氧-贫氧;Mo含量升高至75 μg/g,指示古生产力升高;TOC在4%~5%,该阶段主要发育富有机质层状生物硅质页岩和富有机质(长英质-钙质)粉砂页岩。阶段Ⅶ:龙马溪组沉积中晚期,Sr/Cu比值增大至4.1,指示气候由温湿向干热转化;Sr/Ba比值降至0.1,表明水体古盐度较低;U/Th、Ni/Co、V/Cr比值均减小指示水体还原性减弱,水深变浅;Mo含量降至20 μg/g以下,表明古生产力降低,该阶段主要发育中有机质纹层状(长英质-钙质)粉砂页岩、富有机质纹层状(长英质-钙质)粉砂页岩和富有机质纹层状钙质页岩,并夹有浊流沉积的粉砂岩。

4  沉积模式

在晚奥陶世—早志留世期间,“三隆夹一坳”的构造格局使得四川盆地南部形成了半滞留的海相沉积环境,海相硅质生物大量繁殖,生物成因的硅质沉积物在深水区沉积了大量富硅质页岩[29]。通过古沉积环境恢复,五峰组下部沉积时水体还原性弱,古生产力低,主要在悬浮作用下沉积了中有机质块状黏土质页岩;五峰组上部沉积时水体还原性增强,古生产力提高,在悬浮作用下沉积了富有机质(钙质)粉砂页岩;到五峰组顶部,赫南特冰期事件使得水体深度快速下降,还原性减弱,沉积一层标志性的生物介壳灰岩;龙马溪组中下部沉积时整体水深增加,水体分层底部形成厌氧环境,同时暖湿气候下海洋生物大量繁殖,在上升流和悬浮作用下沉积了富有机质层状生物硅质页岩和富有机质纹层状(长英质-钙质)粉砂页岩等岩相;龙马溪组上部沉积时,由于扬子板块受到挤压而抬升,研究区水体逐渐变浅,水体还原性减弱,古生产力下降,在悬浮作用下沉积了中有机质纹层状(长英质-钙质)粉砂页岩,并伴有浊流和底流作用下沉积的粉砂岩薄层。综合岩相类型、沉积作用以及前文所述沉积环境演化特征建立了川南地区五峰组—龙马溪组页岩的沉积模式(图9)。

前人对海相页岩中有机质富集机制开展了广泛研究,其中有机质富集是“生产力模式”主导还是“保存条件模式”主导一直在学术界處于争论之中[30- 31],越来越多的研究认为有机质富集在实际情况下受到多种因素的共同控制[15,32],较高的初始生产力和良好的有机质保存条件对于有机质富集缺一不可[33]。图10(a)可见五峰组—龙马溪组不同页岩岩相的TOC与古生产力指标Mo含量具有较好的正相关性,表明古生产力越高,页岩的有机质含量越高,其中富有机质层状生物硅质页岩岩相沉积时具有最高的古生产力,Mo含量平均为81.74 μg/g,富有机质(钙质)粉砂页岩、富有机质纹层状(长英质-钙质)粉砂页岩、富有机质纹层状钙质页岩次之,Mo含量平均值分别为71.11、45.18、40.7 μg/g,中有机质纹层状(长英质-钙质)粉砂页岩和中有机质块状黏土质页岩沉积时古产生力较低,Mo含量平均值分别为24.63、2.22 μg/g。

同时TOC与古氧化还原指标U/Th比值也具有较好的正相关性(图10(b)),表明页岩有机质含量随水体还原性增强而升高,缺氧的水底环境利于有机质的保存。其中富有机质层状生物硅质页岩岩相沉积时水体还原性最强,富有机质(钙质)粉砂页岩、富有机质纹层状(长英质-钙质)粉砂页岩、富有机质纹层状钙质页岩次之,该4种岩相U/Th平均值均大于1.25,指示沉积时缺氧的还原环境[24],中有机质纹层状(长英质-钙质)粉砂页岩U/Th平均值为1.02,指示沉积时的贫氧环境,中有机质块状黏土质页岩U/Th平均值为0.45,表明其沉积时水体较为富氧。

TOC与古盐度指标Sr/Ba比值没有明显的相关性(图10(c)),表明在海相沉积环境下,古盐度对有机质富集可能没有明显的控制作用。五峰组—龙马溪组中下部沉积时陆源输入较少,且硅质海洋生物广泛分布,其页岩中石英主要为生物成因[34]。图10(d)可见页岩中石英含量与有机质含量具有正相关性,其中富有机质层状生物硅质页岩、富有机质纹层状(长英质-钙质)粉砂页岩、富有机质纹层状钙质页岩石英含量较高,质量分数平均值分别为60.73%、49.58%、50.77%,有机质质量分数也均大于4%。同时石英含量越高,储层脆性和可压裂性越好,是作为良好页岩气储层的标志。

综上所述,在各岩相类型中富有机质层状生物硅质页岩岩相沉积时具有最高的古生产力、强水体还原性,因而有机质最为富集,此外富有机质纹层状(长英质-钙质)粉砂页岩、富有机质(钙质)粉砂页岩、富有机质纹层状钙质页岩也为有机质较为富集的岩相,中有机质块状黏土质页岩沉积时古产生力较低、水体还原性弱,因而有机质含量下降。

5  结  论

(1)根据矿物组分含量、沉积构造以及有机质含量,将川南地区五峰组—龙马溪组页岩划分为6种岩相类型:富有机质层状生物硅质页岩、富有机质纹层状(长英质-钙质)粉砂页岩、富有机质(钙质)粉砂页岩、富有机质纹层状钙质页岩、中有机质纹层状(长英质-钙质)粉砂页岩和中有机质块状黏土质页岩,并对其宏观、微观特征进行了详细刻画。

(2)沉积环境演化对岩相发育具有控制作用,研究区五峰组—龙马溪组共划分7个演化阶段:五峰组下部在温暖潮湿的气候、较为氧化的水体和较低的盐度下主要沉积了岩相MM;五峰组上部水体还原性增强、古生产力提高,主要沉积了岩相CS;五峰组顶部在赫南特冰期下经历生物大灭绝,沉积了一层生物介壳灰岩;龙马溪组自下而上古气候经历了暖湿—相对干热—暖湿—相对干热的演化,同时古水体也经历了还原—相对氧化—还原—相对氧化的演化,依次沉积了“BS+LS-1”“LS-1+CS”“BS+LS-1”“LS-2+LC”的岩相组合。

(3)沉积环境对页岩有机质的富集也具有明显的控制作用,不同岩相有机质含量与海洋古生产力和水体还原性均呈现良好的正相关性,其中在古生产力较高、水体还原性较强的阶段沉积的岩相BS和LS-1有机质最为富集,且石英含量最高,是页岩气勘探开发的优势岩相。

参考文献:

[1]  邹才能,赵群,王红岩,等.中国海相页岩气主要特征及勘探开发主体理论与技术[J].天然气工业,2022,42(8):1-13.

ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022,42(8): 1-13.

[2]  金之钧,白振瑞,高波,等.中国迎来页岩油气革命了吗?[J].石油与天然气地质,2019,40(3):451-458.

JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology,2019,40(3):451-458.

[3]  黎茂稳,马晓潇,金之钧,等.中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J].石油与天然气地质,2022,43(1):1-25.

LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J].Oil & Gas Geology,2022,43(1):1-25.

[4]  姜鹏飞,吴建发,朱逸青,等.四川盆地海相页巖气富集条件及勘探开发有利区[J].石油学报,2023,44(1):91-109.

JIANG Pengfei, WU Jianfa, ZHU Yiqing, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023,44(1):91-109.

[5]  马新华,谢军,雍锐,等.四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J].石油勘探与开发,2020,47(5):841-855.

MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2020,47(5):841-855.

[6]  王光付,李凤霞,王海波,等. 四川盆地非常规气藏地质-工程一体化压裂实践与认识[J]. 石油与天然气地质,2022,43(5):1221-1237.

WANG Guangfu, LI Fengxia, WANG Haibo, et al. Application of an integrated geology-reservoir engineering approach to fracturing in unconventional gas reservoirs,Sichuan Basin and some insights[J]. Oil & Gas Geology,2022, 43(5): 1221-1237.

[7]  WU W, LIU W Q, MOU C L, et al. Organic-rich siliceous rocks in the upper Permian Dalong Formation (NW middle Yangtze): provenance, paleoclimate and paleoenvironment[J]. Marine and Petroleum Geology, 2021,123:104728.

[8]  LIU W Q, ZHANG X X, QIAO Y, et al. Climate-driven paleoceanography change controls on petrology and organic matter accumulation in the upper Permian Dalong Formation, western Hubei Province, southern China[J]. Sedimentary Geology, 2022,440:106259.

[9]  陆扬博,马义权,王雨轩,等.上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应[J].地球科学,2017,42(7):1169-1184.

LU Yangbo, MA Yiquan, WANG Yuxuan, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area[J]. Earth Science,2017,42(7):1169-1184.

[10]  朱逸青,陈更生,刘勇,等.四川盆地南部凯迪阶-埃隆阶层序地层与岩相古地理演化特征[J].石油勘探与开发,2021,48(5):974-985.

ZHU Yiqing, CHEN Gengsheng, LIU Yong, et al. Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage-Aeronian Stage in southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021,48(5):974-985.

[11]  陈旭,樊隽轩,张元动,等.五峰組及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J].地层学杂志,2015,39(4):351-358.

CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy,2015,39(4):351-358.

[12]  周晓峰,郭伟,李熙喆,等.四川盆地五峰组—龙马溪组有机质类型与有机孔配置的放射虫硅质页岩岩石学证据[J].中国石油大学学报(自然科学版),2022,46(5):12-22.

ZHOU Xiaofeng, GUO Wei, LI Xizhe, et al. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2022,46(5):12-22.

[13]  韩超,吴明昊,吝文,等.川南地区五峰组—龙马溪组黑色页岩储层特征[J].中国石油大学学报(自然科学版),2017,41(3):14-22.

HAN Chao, WU Minghao, LIN Wen, et al. Characteristics of black shale reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2017,41(3):14-22.

[14]  梁超.含油氣细粒沉积岩沉积作用与储层形成机理[D]. 北京:中国地质大学(北京),2015.

LIANG Chao. The sedimentation and reservoir formation mechanism of hydrocarbon-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2015.

[15]  何龙.四川盆地东南缘五峰组—龙马溪组页岩有机质富集机制及沉积环境演化[D].广州:中国科学院大学(中国科学院广州地球化学研究所),2020.

HE Long. Organic matter enrichment and evolution of sedimentary environment of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D]. Guangzhou: University of Chinese Academy of Sciences(Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2020.

[16]  LU Y B, HAO F, LU Y C, et al. Lithofacies and depositional mechanisms of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area, southern China[J]. AAPG Bulletin, 2020,104(1):97-129.

[17]  陆扬博.上扬子五峰组和龙马溪组富有机质页岩岩相定量表征及沉积过程恢复[D]. 武汉:中国地质大学(武汉),2020.

LU Yangbo. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for Upper Yangtze Wufeng and Longmaxi organic-rich shales[D]. Wuhan:China University of Geosciences(Wuhan), 2020.

[18]  胡宗全,杜伟,朱彤,等.四川盆地及其周缘五峰组—龙马溪组细粒沉积的层序地层与岩相特征[J].石油与天然气地质,2022,43(5):1024-1038.

HU Zongquan, DU Wei, ZHU Tong, et al. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi Formations in the Sichuan Basin and on its periphery[J]. Oil & Gas Geology,2022,43(5):1024-1038.

[19]  王濡岳,胡宗全,龙胜祥,等.四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J].石油与天然气地质,2022,43(2):353-364.

WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J].Oil & Gas Geology,2022,43(2):353-364.

[20]  葛祥英.四川盆地东部奥陶-志留纪交替时期事件沉积与有机质富集[D].北京:中国地质大学(北京),2020.

GE Xiangying. The events across the Ordovician-Silurian transition and the organic enrichment of black shales in the east of Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2020.

[21]  LIANG C, WU J, JIANG Z X, et al. Sedimentary environmental controls on petrology and organic matter accumulation in the upper fourth member of the Shahejie Formation (Paleogene, Dongying Depression, Bohai Bay Basin, China)[J]. International Journal of Coal Geology, 2018,186:1-13.

[22]  TRIBOVILLARD N, RIBOULLEAU A, LYONS T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales[J]. Chemical Geology, 2004,213:385-401.

[23]  WEI C, DONG T, HE Z L, et al. Major, trace-elemental and sedimentological characterization of the Upper Ordovician Wufeng-Lower Silurian Longmaxi formations, Sichuan Basin, South China: insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales[J]. Marine and Petroleum Geology, 2021,126:104905.

[24]  王彤,朱筱敏,董艳蕾,等.基于微量元素分析的古沉积背景重建:以准噶尔盆地西北缘古近系安集海河组为例[J].地质学报,2020,94(12):3830-3851.

WANG Tong, ZHU Xiaomin, DONG Yanlei, et al. Trace elements as paleo sedimentary environment indicators: a case study of the Paleogene Anjihaihe Formation in the northwestern Junggar Basin[J]. Acta Geologica Sinica, 2020, 94(12): 3830-3851.

[25]  WANG A, WANG Z, LIU J, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 2021,559:1-15.

[26]  LI D L, LI R X, ZHU Z W, et al. Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustrine Zhangjiatan oil shale, southern Ordos Basin, China[J]. Acta Geochimica, 2018,37(1):134-150.

[27]  KIMURAH, WATANABE Y. Ocean anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29:995-998.

[28]  ZHANG L C, XIAO D S, LU S F, et al. Effect of sedimentary environment on the Formation of organic-rich marine shale: insights from major/trace elements and shale composition[J]. International Journal of Coal Geology, 2019,204:34-50.

[29]  CHEN L, LU Y C, LI J, et al. Comparative study on the Lower Silurian Longmaxi marine shale in the Jiaoshiba shale gas field and the Pengshui area in the southeast Sichuan Basin, China[J]. Geosciences Journal, 2020,24(1):61-71.

[30]  YANG S C, HU W X, YAO S P, et al. Constraints on the accumulation of organic matter in Upper Ordovician-Lower Silurian black shales from the Lower Yangtze region, South China[J]. Marine and Petroleum Geology, 2020,120:104544.

[31]  LI Y F, ZHANG T W, ELLIS G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017,466:252-264.

[32]  ZHOU L, ALGEO T J, SHEN J, et al. Changes in marine productivity and redox conditions during the late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,420:223-234.

[33]  WU L Y, LU Y C, JIANG S, et al. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area[J]. Marine and Petroleum Geology, 2019,102:74-85.

[34]  ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: implications for pore evolution[J]. Journal of Natural Gas Science & Engineering, 2017,38:21-38.

(編辑  修荣荣)

猜你喜欢
纹层
鄂尔多斯盆地延长组长72 油层组陆相页岩纹层及裂缝分布特征的量化表征
湖泊年纹层研究进展与展望
沉积学报(2023年6期)2024-01-04 02:57:52
沧东凹陷孔二段页岩纹层结构类型及其对储集性能的影响
威远地区五峰组—龙马溪组页岩纹层发育特征及地质意义
海相页岩纹层特征、成因机理及其页岩气意义
中国中西部盆地典型陆相页岩纹层结构与储层品质评价
页岩纹层与破裂方式实验研究
渤海湾盆地东营凹陷湖相富有机质页岩纹层特征和储集性能
海相页岩纹层特征及其对页岩储层发育的影响
——以川南长宁地区龙马溪组为例
断块油气田(2021年2期)2021-06-07 16:00:28
含气页岩不同纹层及组合储集层特征差异性及其成因
——以四川盆地下志留统龙马溪组一段典型井为例