SPE-UPLC-MS/MS 同时测定食品中24 种酸性工业染料

2024-02-18 13:21闵宇航刘斯琪余晓琴李澍才张丽平
食品工业科技 2024年1期
关键词:小柱滤膜染料

闵宇航,刘斯琪,余晓琴,李澍才,张丽平

(1.四川省食品检验研究院,四川成都 611731;2.国家市场监管重点实验室(白酒监管技术),四川成都 611731;3.成都纺织高等专科学校轻工与材料学院,四川成都 611731)

工业染料被广泛应用于毛皮制品、纺织品、陶瓷制品等工业产品的上色,具有色泽艳丽、价格低廉、不易褪色等优点。工业染料多以苯、甲苯、萘等芳香族化合物为原料,经过磺化、偶氮化等化学反应而成,进入人体后,会被肠道细菌分解成芳香胺,具有致癌和致突变性[1-2]。此外,还具有胚胎毒性,会造成发育异常[3]。酸性工业染料一般都是芳香族的磺酸钠盐,溶于水后电离成色素酸阴离子,能与氨基或酰胺基相结合,易上色于蛋白类产品[4],近年来,食品中非法添加酸性工业染料的恶性事件屡禁不止,例如灌肠类肉制品中检出红2G[5],卤肉中检出酸性橙Ⅱ[6],黄三鱼中非法添加酸性橙Ⅱ[7],豆制品加工中非法添加酸性金黄G[8]等。针对风险,监管部门加大了对食品中非法添加工业染料的打击力度,近几年也陆续发布了食品中工业染料的补充检验方法,但是现行的检测方法存在能检测的酸性工业染料较少,基质覆盖不够,通用性不强的问题,造成监管存在较大漏洞。因此,建立一种包含化合物多、通用性强、能覆盖多种高风险食品基质的酸性工业染料检测方法非常有必要。

目前,工业染料的检测方法有薄层色谱法[9]、酶联免疫法[10]、电化学分析法[11]、气相色谱串联质谱法[12-13],高效液相色谱法[14-15]和高效液相色谱串联质谱法[16-18]。由于食品基质较为复杂,酶联免疫法和高效液相色谱法容易出现假阳性;薄层色谱法和电化学分析法的灵敏度较低,无法满足日常风险筛查的需求;气相色谱串联质谱法前处理较为复杂,检测效率较低;液相色谱串联质谱法具有灵敏度高、抗干扰能力强以及前处理方式较为简便的优点[19],被广泛应用于食品非法添加的检测中,但是在质谱检测中由于基质中的磷脂、胆固醇、蛋白质等内源性物质会影响目标分析物的离子化效率,使得目标分析物的质谱信号增加或者减弱,产生基质效应,造成定量测定结果不准确的问题[20]。

本研究拟采用超高效液相色谱-串联质谱法(UPLC-MS/MS),结合固相萃取(SPE)净化技术降低基质效应,建立能覆盖非法添加的高风险食品基质包括肉制品、豆制品、水产品和调味品中24 种酸性工业染料的测定方法,以期为工业染料的非法添加监管提供强有力的技术支撑。

1 材料与方法

1.1 材料与仪器

橙黄Ⅳ、红2G、甲基橙、喹啉黄、酸性橙Ⅱ、酸性橙3、酸性橙10、酸性橙12、酸性橙20、酸性红26、酸性红52、酸性大红GR、酸性红87、酸性黄17、酸性金黄G、酸性蓝1、酸性蓝3、酸性蓝7、酸性蓝83、酸性蓝90、酸性蓝113、酸性绿16、酸性紫43、铬蓝SE 德国Dr.Ehrenstorfer GmbH 公司,纯度均大于98%;Cleanert PWAX 固相萃取小柱(150 mg,6 mL)天津博纳艾洁尔科技有限公司;Oasis WAX 固相萃取小柱(150 mg,6 mL)美国Waters 公司;WondaSep WAX 固相萃取小柱(150 mg,6 mL)日本岛津公司;0.25 μm 聚四氟乙烯(Poly tetra fluoroethylene,PTFE)滤膜、0.25 μm 聚偏氟乙烯(Polyvinylidene fluoride,PVDF)滤膜、0.25 μm 聚丙烯滤膜(Polypropylene,PP)滤膜、0.25 μm 尼龙(Nylon,PA)滤膜 天津亿鼎鑫分析仪器有限公司;乙腈、乙酸铵 色谱纯,美国Thermo Fisher Scientific公司;氨水 分析纯,成都科隆化学品有限公司;水产品、调味品、肉制品、豆制品各40 批次 购自农贸市场。

ACQUITY UPLC®BEH C18色谱分析柱(2.1 mm×100 mm,1.7 μm)美国WatersTM公司;AcclaimTMRSLC 120 C18色谱分析柱(2.1 mm×100 mm,2.2 μm)、Thermo Scientific Heraeus Mlutifuge X3R 高速冷冻离心机 美国Thermo Fisher Scientific 公司;ZORBAX Eclipse RRHD C18色谱分析柱(2.1 mm×50 mm,1.8 μm)、ZORBAX Eclipse RRHD C18色谱分析柱(3.0 mm×150 mm,1.8 μm)、Agilent 1290 InfinityⅡ超高效液相色谱仪、Agilent 6495C 三重四极杆质谱仪 美国Agilent 公司;IRM IDH30 超声仪 德国IRM Technology GmbH 公司;IKA MS3 涡旋混合器 德国IKA 公司;Biotage TurboVap 全自动氮吹仪 瑞典Biotage 公司。

1.2 实验方法

1.2.1 标准溶液的制备 准确称取24 种酸性工业染料标准品各10 mg(精确至0.01 mg),用水溶解,乙腈定容至10 mL,混匀,制成1 mg/mL 的标准储备液。再精密吸取10 μL 标准储备液置10 mL 容量瓶中,乙腈定容至刻度,混匀,制成1 μg/mL 的混合标准溶液。

精密吸取混合标准溶液适量,采用空白基质加标的方法制备浓度为20、50、100、150、200、250、300 ng/mL 随行基质标准工作溶液。

1.2.2 供试品溶液的制备 称取均质后的样品2 g(精确至0.001 g),置50 mL 离心管中,加入10 mL氨水乙醇溶液(氨水:无水乙醇:水=2:7:1,v/v/v),涡旋1 min,再超声(功率500 W)10 min,以10000 r/min在4 ℃条件下离心5 min,上清液转移至20 mL 容量瓶中,残渣再加入5 mL 氨水乙醇溶液重复提取1 次,合并上清液,用氨水乙醇溶液定容至刻度,混匀,作为提取液。精密吸取10 mL 提取液至氮吹管中,氮吹浓缩至约1 mL,加入10 mL 5%甲醇水溶液混匀,作为待净化液。

净化前,依次用6 mL 甲醇,6 mL 水对PWAX固相萃取小柱进行活化。将待净化液以1 mL/min的速度通过固相萃取小柱,依次用6 mL 水,6 mL 甲醇淋洗,再用5%氨水甲醇溶液10 mL 洗脱,收集洗脱液,40 ℃氮吹至近干,精密加入1 mL 乙酸铵乙腈溶液(10 mmol/L 乙酸铵溶液:乙腈=1:1,v/v)复溶,过PTFE 滤膜,滤液供液相色谱-串联质谱仪测定。

1.2.3 分析条件 液相色谱条件:色谱柱:Agilent ZORBAX Eclipse RRHD C18色谱柱(3.0 mm×150 mm,1.8 μm);柱温:40 ℃;进样量:2 μL;流动相:A 相:10 mmol/L 乙酸铵溶液;B 相:乙腈;流速0.3 mL/min;流动相梯度见表1。

表1 流动相梯度洗脱程序Table 1 The gradient elution program of mobile phase

质谱条件:离子源:电喷雾离子源(ESI);扫描方式:负离子扫描;检测方式:多反应检测(MRM);毛细管电压:3.0 kV;干燥气温度:250 ℃;干燥气流量:11 L/min;雾化气压力:25 psi;鞘气温度:250 ℃;鞘气流量:11 L/min。化合物质谱参数见表2。

表2 24 种酸性工业染料的质谱参数Table 2 Mass parameters of 24 acid industrial dyes

1.3 数据处理

采用美国Agilent Technologies Inc.的MassHunter Workstation Software 11.0 软件进行分析处理,Microsoft Office Excel 2016 软件进行统计分析。

2 结果与分析

2.1 色谱条件的优化

2.1.1 色谱柱的选择 工业染料的测定,研究[21-22]均采用了C18色谱柱进行液相色谱分离,为实现24 种酸性工业染料的快速有效分离,实验分别考察了Waters ACQUITY UPLC®BEH C18(2.1 mm×100 mm,1.7 μm)、Thermo AcclaimTMRSLC 120 C18(2.1 mm×100 mm,2.2 μm)、Agilent ZORBAX Eclipse RRHD C18(2.1 mm×50 mm,1.8 μm)、Agilent ZOR BAX Eclipse RRHD C18(3.0 mm×150 mm,1.8 μm)4 种不同品牌和参数的C18色谱柱。Waters ACQUITY UPLC®BEH C18(2.1 mm×100 mm,1.7 μm)、Thermo AcclaimTMRSLC 120 C18(2.1 mm×100 mm,2.2 μm)、Agilent ZORBAX Eclipse RRHD C18(2.1 mm×50 mm,1.8 μm)由于柱长较短,可以缩短分析时间,但是无法实现酸性橙Ⅱ与酸性12 两个同分异构体的基线分离,影响定性定量的准确性;选择柱长更长的Agilent ZORBAX Eclipse RRHD C18(3.0 mm×150 mm,1.8 μm)进行考察后的结果显示24 种目标化合物均可以得到较好的分离。

2.1.2 流动相的优化 液相色谱中常用乙腈和甲醇作为有机流动相,相较于甲醇,乙腈的洗脱能力更强,可以提高分析效率[23],而在流动相水相中加入乙酸铵可以改善酸性染料的峰型,提高分离度,同时增加质谱负模式下的离子化效率[24-25]。实验考察了乙腈-水和乙腈-10 mmol/L 乙酸铵溶液两种流动相体系。考察结果发现水相中加入乙酸铵可以得到较好的酸性工业染料色谱峰形,相比之下纯水相的效果略差,喹啉黄和铬蓝SE 峰形有拖尾的情况;而对乙腈-10 mmol/L 的流动相体系进行梯度条件的考察,结果表明在表1 的梯度条件下,可以实现酸性橙Ⅱ与酸性12 两个同分异构体的基线分离,同时24 种目标化合物均可以达到一个较好的峰型和分离。24 种酸性工业染料的总离子流图见图1。

图1 24 种酸性工业染料的总离子流图(100 ng/mL)Fig.1 Total ion current chromatogram of the 24 acid industrial dyes (100 ng/mL)

2.2 质谱条件的优化

酸性工业染料中含有磺酸基,易溶于水电离产生阴离子,选择ESI-模式进行检测,母离子一般为[M-Na]-;含有2 个或以上Na+,且具有相同数量的磺酸基的化合物会形成[(M-xNa+yH)/(x-y)]-多离子共存的状态,单价态和更高价态的分子离子峰响应较低,多以二价准分子离子为基峰[26],例如红2G、酸性蓝113、酸性红26、铬蓝SE。确定目标化合物母离子后,进行产物离子扫描,得到相应的碎片离子,尽量选择响应最好的三对碎片离子进行参数优化,避免出现假阳性,具体质谱参数见表2。

2.3 前处理条件的优化

2.3.1 提取溶剂的选择 实验测定的目标化合物均含有苯磺酸钠结构,属于强酸性化合物,容易被碱性溶剂提取,参考文献[27],考察采用空白基质加标实验,添加水平为100 μg/kg,每个条件做3 个平行实验(n=3),以溶剂标准曲线计算目标化合物的绝对回收率。实验考察了氨水-乙醇-水溶液(2:88:10,v/v/v)、氨水-乙醇-水溶液(10:80:10,v/v/v)、氨水-乙醇-水溶液(20:70:10,v/v/v)3 种提取溶剂的提取能力,以绝对回收率评价提取效果。由于目标化合物均含有苯磺酸钠结构,容易被碱性溶剂提取,实验结果表明,随着提取溶剂中氨水浓度的升高,目标化合物的提取效果越好,采用氨水-乙醇-水溶液(2:88:10,v/v/v)作为提取溶剂,24 种酸性工业染料的绝对回收率在27%~79%,采用氨水-乙醇-水溶液(10:80:10,v/v/v)作为提取溶剂,24 种酸性工业染料的绝对回收率在31%~89%,采用氨水-乙醇-水溶液(20:70:10,v/v/v)作为提取溶剂,24 种酸性工业染料的绝对回收率在35%~92%;氨水-乙醇-水溶液(20:70:10,v/v/v)的提取能力优于其余两种考察溶剂,提取溶剂考察结果见图2。

图2 提取溶剂的考察(n=3)Fig.2 Investigation of extraction solvents (n=3)

2.3.2 固相萃取小柱的选择 实验测定的目标化合物均带有磺酸根,属于强酸性极性化合物,净化时宜采用对强酸性化合物有很好选择性的弱阴离子交换固相萃取小柱[28]。考察采用空白基质加标实验,添加水平为100 μg/kg,每个条件做3 个平行实验(n=3),以溶剂标准曲线计算目标化合物的绝对回收率,实验考察了市面上常见的三种弱阴离子交换固相萃取小柱,分别为Waters Oasis WAX(150 mg,6 mL)、Agela Cleanert PWAX(150 mg,6 mL)和岛津WondaSep WAX(150 mg,6 mL),以绝对回收率评价三个小柱的净化效果。结果表明,采用岛津WondaSep WAX(150 mg,6 mL)作为净化小柱,24 种目标化合物的绝对回收率在30%~83%,采用Waters Oasis WAX(150 mg,6 mL)作为净化小柱,24 种目标化合物的绝对回收率在31%~90%,采用Agela Cleanert PWAX(150 mg,6 mL)作为净化小柱,24 种目标化合物的绝对回收率在35%~92%,并且待净化溶液在Agela Cleanert PWAX(150 mg,6 mL)的通过速度高于其他两种固相萃取小柱。综合考察结果Agela Cleanert PWAX 的净化效果和净化速度优于Waters Oasis WAX 和岛津WondaSep WAX,固相萃取小柱考察结果见图3。

图3 固相萃取小柱的考察(n=3)Fig.3 Investigation of solid phase extraction colum (n=3)

2.3.3 滤膜的选择 常用的尼龙滤膜会对酸性染料产生吸附作用[29-30],实验室考察了聚偏氟乙烯(PVDF)滤膜、聚丙烯滤膜(PP)滤膜、聚四氟乙烯(PTFE)滤膜、尼龙(PA)滤膜。考察采用空白基质加标实验,添加水平为100 μg/kg,每个条件做3 个平行实验(n=3),以溶剂标准曲线计算目标化合物的绝对回收率,结果表明,PA 滤膜对红色染料有较为明显的吸附作用,能在滤膜上看见红色染料的残留,采用PA 滤膜进行过滤,红2G、酸性红26、酸性红52 和酸性大红GR 的绝对回收率仅为30%~65%,明显低于其他三种滤膜;采用PVDF 滤膜,24 种酸性工业染料的绝对回收率为34%~88%,采用PP 滤膜,24 种酸性工业染料的绝对回收率为35%~92%,采用PTFE 滤膜,24 种酸性工业染料的绝对回收率为36%~95%;综合考虑选择PTFE 滤膜,滤膜考察结果见图4。

图4 滤膜的考察(n=3)Fig.4 Investigation of filter membrane (n=3)

2.4 方法学验证

2.4.1 基质效应 实验通过斜率法[31]来评价基质效应(matrix effect,ME),采用公式:进行计算,A 表示溶剂标准曲线斜率,B 表示基质标准曲线斜率。当ME<1,表明基质对目标化合物的响应产生了抑制作用;ME>1,表明基质对目标化合物的响应产生了增强作用;ME=1,表明没有基质效应。若0.8≤ME≤1.2 时,为弱基质效应,当0.5<ME<0.8 或1.2<ME<1.5 时,为中等基质效应;当ME≤0.5 或ME≥1.5 时,为强基质相应[32]。实验考察了20~300 ng/mL浓度范围内24 种酸性工业染料在4 种食品基质中的基质效应,结果表明,考察的食品基质对24 种酸性工业染料均产生了抑制作用,其中酸性橙12、酸性橙20、酸性大红GR、酸性红87、酸性蓝113、铬蓝SE 在四种食品基质中均表现为强抑制基质效应;酸性蓝1、酸性绿16 在四种基质中均为弱抑制基质效应;其余16 种酸性工业染料在四种基质中呈现不同强度的基质抑制效应,这可能是因为四种基质中蛋白质、脂肪组成存在差异,在同样的前处理条件下,产生了不同的基质效应。基质效应的具体数据见表3。

表3 四种食品基质中24 种酸性工业染料的基质效应Table 3 Matrix effects of 24 acid industrial dyes in four food matrices

2.4.2 基质效应补偿措施 弥补和消除基质效应常用的方法主要有同位素内标法[33]和基质匹配标准溶液法[34]。由于市面上没有合适的同位素内标,基质效应的补偿措施采用基质匹配标准溶液法。实验考察了随行基质标准工作溶液和配制基质标准工作溶液的补偿效果。采用添加水平为100 μg/kg 的空白基质加标实验(n=3),分别以随行基质标准工作溶液和配制基质标准工作溶液计算目标化合物的回收率,考察结果见图5。结果发现采用随行基质标准工作溶液计算24 种酸性工业染料的回收率为92.0%~103.2%;采用配制基质标准工业溶液计算的回收率为29.4%~88.1%,其中酸性橙12、酸性黄17、酸性蓝83、酸性蓝113、铬蓝SE 的回收率均低于60%,不符合GB/T 27404 的检测方法技术要求,实验选择随行基质标准工作溶液作为基质效应的补偿措施。

图5 基质效应补偿措施的考察(n=3)Fig.5 Research on compensation measures of matrix effects (n=3)

2.4.3 线性范围、检出限和定量限 按照前处理方法制备24 种酸性工业染料的随行基质标准工作溶液,浓度分别为20、50、100、150、200、250、300 ng/mL。以目标化合物定量离子的峰面积为纵坐标,质量浓度为横坐标得到线性回归方程(表4),24 种酸性工业染料在四种食品基质中线性范围20~300 ng/mL 的相关系数r均大于0.999。通过空白基质加标实验测定,24 种酸性工业染料在四种基质中10 μg/kg 的添加水平下的加标溶液的定性离子信噪比(S/N)均大于3,表明24 种酸性工业染料的在四种基质中的检出限均可达到10 μg/kg;24 种酸性工业染料在四种基质中25 μg/kg 的添加水平下加标溶液的定性离子信噪比(S/N)大于10,且回收率为90.4%~112.7%,表明24 种酸性工业染料在四种基质中的定量限均可达到25 μg/kg。

表4 24 种酸性工业染料在4 种食品基质中的线性方程Table 4 Regression equation of 24 acid industrial dyes in four food matrices

2.4.4 回收率、精密度和稳定性 在空白基质中添加25、100、250 μg/kg 三个水平,每个水平分别做6 份平行样,计算各水平的回收率和相对标准偏差(relative standard deviation,RSD)。豆制品、调味品、水产品、肉制品中24 种酸性工业染料三个加标水平下的平均回收率为91.0%~112.7%,RSD 为0.42%~4.39%,具体见表5。样品加标溶液分别在0、2、4、8、16、24、48 h 进样,定量离子峰面积RSD 为2.69%~4.41%。实验结果显示该方法在四个基质中三个浓度水平下回收率均在GB/T 27404 给出的参考范围内,表明该方法准确且稳定。

表5 24 种酸性工业染料在4 种食品基质中的回收率与RSDTable 5 Spiked recoveries and RSDs of 24 acid industrial dyes in four food matrices

2.4.5 实验室间协作验证 选择了5 家检测机构对本方法进行验证。验证结果显示,24 种酸性工业染料在四种基质的20~300 ng/mL 线性范围内相关系数r均大于0.999;四种基质检出限浓度下的加标试样溶液定性离子信噪比均大于3,满足方法检出限的要求;四种基质定量限浓度下的加标试样溶液定性离子信噪比均大于10,且回收率为86.1%~115.3%,满足方法定量限的要求。24 种酸性工业染料在四种食品基质,25、100、250 μg/kg 三个加标水平下的回收 率为86.1%~116.1%,RSD 为0.86%~4.96%,满足方法准确度的要求。5 家检测机构的验证数据说明该方法在不同的实验室之间的耐用性良好。

2.5 实际样品的检测

采用实验建立的方法对实验室周边农贸市场销售的豆制品、调味品、水产品、肉制品各40 批次进行测定。结果发现,2 批次卤肉样品中检出了酸性橙Ⅱ,含量分别为138±2.8 μg/kg 和179±3.7 μg/kg;2 批次香肠样品中检出红2G,含量分别为320±8.6 μg/kg和230±6.2 μg/kg;其余样品均未检出。

3 结论

本实验建立了食品中24 种酸性工业染料测定的超高效液相色谱串联质谱方法。实验考察了提取溶剂、固相萃取小柱、滤膜选择的前处理条件,优化了色谱条件和质谱采集参数,并对方法的线性范围、检出限、定量限、回收率、精密度、稳定性等技术指标进行了考察,最终建立了食品中24 种酸性工业染料的固相萃取小柱净化结合超高效液相色谱串联质谱技术测定的检测方法。实验结果表明,24 种酸性工业染料在20~300 ng/mL 范围内,相关系数r均大于0.999;方法检出限为10 μg/kg,定量限为25 μg/kg;在25、100、250 μg/kg 三个不同加标水平下的回收率为91.0%~112.7%,相对标准偏差(n=6)为0.42%~4.39%。该方法操作简便快速、灵敏度高、通用性强、结果准确可靠,能一次性测定食品中24 种酸性工业染料,扩大了酸性工业染料筛查范围和覆盖的食品基质,可以为监管提供强有力的技术支撑。

猜你喜欢
小柱滤膜染料
志向
新染料可提高电动汽车安全性
中国染料作物栽培史
溶胶-凝胶法制备高性能ZrO2纳滤膜
A case report of acupuncture of dysphagia caused by herpes zoster virus infection
染料、油和水
新乡:小城失败者
体积之争
新型含1,2,3-三氮唑的染料木素糖缀合物的合成
耳后游离皮片在修复鼻小柱与上唇粘连外翻畸形中的临床应用