砂样岩屑图像特征的岩性智能高效识别

2024-01-02 18:15夏文鹤谢万洋唐印东李皋韩玉娇
石油地球物理勘探 2023年3期
关键词:机器视觉

夏文鹤 谢万洋 唐印东 李皋 韩玉娇

摘要:在录井过程中,岩屑的岩性分析主要依靠人工,效率较低且稳定性较差,难以在钻进地层过程中快速识别岩性变化。为此,提出基于砂样图像中颗粒岩屑纹理、色泽和形状等特征的岩性智能识别方法。首先,计算砂样图像的像素值梯度并求取颗粒质心,采用分水岭算法获取颗粒岩屑轮廓线并標记;然后,采用图像分割算法从砂样图像中分离出待检测的单个颗粒岩屑图像,建立颗粒岩屑图像样本库;最后,利用注意力机制及特征融合模块改进MobileNetV2网络,提取颗粒岩屑特征并分类,实现单个颗粒岩屑图像岩性识别,进而获取砂样岩性成分比。该方法将以往岩性智能识别过程中常采用的砂样整体识别方式转变为对砂样中单颗粒岩屑的岩性识别,大幅度减少了颗粒岩屑之间的相互干扰。多个油气区块的砂样图像测试结果表明,该方法对灰岩、泥岩、砂岩和页岩的识别准确率均不低于92%,一组砂样图像岩性分析的用时小于10s。

关键词:岩屑录井,砂样图像,颗粒岩屑图像特征,岩性智能识别,机器视觉

中图分类号:P631 文献标识码:A doi:10.13810/j.cnki.issn.10007210.2023.03.002

猜你喜欢
机器视觉
基于芯片点胶系统的视觉检测技术研究
全自动模拟目标搜救系统的设计与实现
基于机器视觉的自动浇注机控制系统的研究
机器视觉技术的发展及其应用
视觉拉线检测器的设计与实现
大场景三维激光扫描仪在研究生实践教学培养中的应用
基于机器视觉的工件锯片缺陷检测系统设计
基于机器视觉技术的动态“白带”常规检测系统的开发
对激光切割机的改进
人工智能在高校图书馆的预期