单粒播种与施磷对间作花生种间竞争和生长的调控效应

2023-12-28 03:02姜文洋陈俊南昝志曼汪江涛郑宾刘领刘娟焦念元
中国农业科学 2023年23期
关键词:施磷单粒种间

姜文洋,陈俊南,昝志曼,汪江涛,郑宾,刘领,刘娟,焦念元

单粒播种与施磷对间作花生种间竞争和生长的调控效应

姜文洋1,陈俊南1,昝志曼1,汪江涛1,郑宾1,刘领1,刘娟2,焦念元1

1河南科技大学农学院,河南洛阳 471000;2河南省农业科学院经济作物研究所,郑州 450002

【背景】玉米()间作花生()(玉米||花生)地上、地下种间作用明显,间作产量优势突出,在缓解我国油粮争地矛盾中起到重要作用,但花生处于种间竞争劣势,成为限制间作优势进一步提高的瓶颈。【目的】探明提高玉米||花生体系中花生种间竞争的调控措施及其机理,为玉米||花生高产栽培提供理论依据和技术支撑。【方法】2021—2022年在河南科技大学试验农场,以玉米‘郑单958’和花生‘花育16’为供试材料,设种植方式、花生播种方式和施磷量3因素完全随机区组试验,即种植方式设花生单作和玉米||花生,花生播种方式设花生单粒播种和双粒播种,施磷量设0(P0)和180 kg P2O5·hm-2(P180);以花生双粒播种的玉米||花生体系为对照,研究花生单粒播种对间作花生相对玉米的种间竞争力、净光合速率、最大生长速率、干物质积累和分配及间作产量优势的影响。【结果】与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生相对玉米的侵占力和拥挤系数,相对侵占力分别提高29.72%—80.85%和38.91%—87.07%,相对拥挤系数分别提高76.59%—172.02%和244.43%—308.70%。单粒播种间作花生的净光合速率显著高于双粒播种,最大生长速率明显高于双粒播种的强势株和弱势株,其生育后期的干物质显著提高、干物质向荚果的分配比例增加,提高了茎、叶干物质对荚果的贡献率。单粒播种间作花生的产量和间作优势高于双粒播种,其中产量高出18.84%—33.32%,差异显著。与不施磷相比,施磷显著提高间作花生净光合速率,增加最大生长速率、促进干物质积累,增加产量。【结论】花生单粒播种能提高间作花生产量和间作优势,关键在于单粒播种较双粒播种能增强间作花生种间竞争能力,显著提高净光合速率,促进干物质积累及其向荚果分配。施磷对单粒播种间作花生的生长发育具有促进作用。

玉米||花生;种间竞争;强势株与弱势株;最大生长速率;产量;单粒播种;磷肥

0 引言

【研究意义】玉米()||花生()是一种较为常见的禾豆作物间作方式,对缓解华北平原地区粮油争地矛盾发挥了重要作用[1],但在其共处后期,间作花生处于光竞争劣势[2],造成产量不高[3],成为玉米||花生进一步高产的瓶颈[4]。因此,研究提高玉米||花生体系中花生种间竞争能力的调控措施及其机理,对玉米||花生高产栽培具有重要意义。【前人研究进展】间作能够增加农田生物多样性,改善土地生产能力,相比单作具有明显的生物和经济产量优势[5-7],这主要是由于各作物生长发育阶段的时间和空间差异,改变了间作系统中光、温和水的空间分布和利用,从而显著提高作物的产量,实现资源的高效利用[8-9]。玉米||花生高矮相间,实现光能分层、立体高效利用[10],地上、地下种间作用明显,间作产量优势突出[11-12];施用磷肥能提高花生净光合速率、提高间作花生产量[3]。但在玉米||花生共处后期,由于地上部玉米的遮荫作用[4],使花生处于种间竞争劣势[12],降低花生干物质和产量[11]。已有报道,与花生机械化双粒同穴播种相比,单粒播种能明显增大花生一穴双株之间的距离,协调个体与群体关系,缓解生育后期种内竞争[13-14],避免“大小苗”现象,提高光合能力[15-16],增强抗逆性发挥个体潜力,延缓后期衰老[17],增加产量[18]。ADLER等[19]研究认为,降低种内竞争能缓解种间竞争。施磷能促进玉米||花生地下种间互作,提高间作花生产量[12]。【本研究切入点】针对花生单粒播种能缓解双粒播种种内矛盾,是否能提高玉米||花生体系中花生种间竞争能力和产量,施磷对其产生哪些影响等问题,目前还不清楚。【拟解决的关键问题】在两个磷水平下,以玉米||花生体系中双粒播种花生的强势株和弱势株为对照,研究单粒播种花生的相对玉米种间竞争力、净光合速率、最大生长速率、干物质积累与分配的特点,解释花生单粒播种与施磷协调间作花生种间竞争、促进生长和提高产量的机理,以期为玉米||花生高产、高效提供理论依据。

1 材料与方法

1.1 试验地概况

于2021—2022年在河南科技大学农场(33°35′— 35°05′N,111°8′—112°59′E)进行田间试验,该地属于半湿润、半干旱大陆性季风气候,全年日照时数约2 060 h,年平均降水量约610 mm,年均蒸发量约2 113 mm,年均气温约13.6 ℃,无霜期约217 d。土壤为黄潮土,耕层土壤全氮1.32 g·kg-1、有机质10.72 g·kg-1、碱解氮79.86 mg·kg-1、速效磷11.62 mg·kg-1、速效钾223.8 mg·kg-1、有效铁5.98 mg·kg-1、土壤容重1.35 g·cm-3,土壤pH 7.56。

1.2 试验设计

以玉米‘郑单958’和花生‘花育16’为供试材料。以玉米间作花生(玉米||花生)为研究对象,设种植方式、花生播种方式和施磷量3因素完全随机区组试验,即种植方式设花生单作和玉米||花生,花生播种方式设花生单粒播种和双粒播种,施磷量设施磷0(P0)和180 kg P2O5·hm-2(P180)2个水平,共8个处理,每个处理重复3次,共24个小区,每个小区长8 m,宽6 m,面积48 m2。

单作花生双粒播种时,行、穴距分别为30、20 cm,每穴2粒,密度33.33万株/hm2;单粒播种时,行、穴距分别为30、13.5 cm,每穴1粒,密度24.69万株/hm2。玉米||花生采用2﹕4模式,即2行玉米间作4行花生(图1),垄底宽100 cm,垄面宽约70 cm;玉米宽行行距160 cm,窄行行距40 cm,株距20 cm,花生播于其宽行中,其单、双粒方式分别与单作单、双粒播种方式一致;玉米、花生间距35 cm。磷肥一次性基施;花生单作、间作施氮量均基施90 kg·hm-2,玉米单作、间作施氮量均为180 kg·hm-2,按基追比1﹕1两次施用,追肥在玉米小喇叭口期进行。氮肥施用尿素,磷肥施用磷酸二铵。2021年玉米、花生6月24日同时播种,10月13日同时收获;2022年花生6月14日播种、10月12日收获,玉米7月14日播种、10月28日收获。

图1 玉米||花生模式田间种植示意图

1.3 测定项目与方法

1.3.1 干物质积累与分配、转移与贡献 分别于2021年苗后29、37、45、70 和93 d,及2022年苗后27、41、51、72和94 d取样。双粒播种的花生一穴双株中生长相对较大的一株定义为强势株,生长相对较小的一株定义为弱势株。每小区分别取4株,每个处理3次重复。自来水冲洗干净后,按茎、叶、荚果分样装袋,放入烘箱,105 ℃杀青30 min,75 ℃烘至恒重称重。相关指标计算方法如下:

干物质量采用Logistic生长模型[20]进行拟合,公式:

式中,为任意时间干物质量(g/plant);为最大干物质量(g/plant);为生育期标尺,苗后天数(d);、为待定系数。对式(1)进行一阶求导得到植株生长速率函数:

对式(2)进行一阶求导、二阶求导并令其等于0,求出植株最大生长速率(max):

干物质分配:总干物质量=茎重+叶重+果重;饱果期各部位干物质分配比率=(各部位干物质重/总干物质量)×100%。

干物质转移与贡献:转移量(TR)=最大茎(叶)干质量-收获期茎(叶)干质量;转移率(TA)=[最大茎(叶)干质量-收获期茎(叶)干质量]/最大茎(叶)干质量×100%;贡献率(CT)=(转运量/收获时荚果干质量)×100%。

1.3.2 光合相关参数 于花生结荚期和饱果期,选择晴天的9:00—11:30,使用LI-6400XT型光合仪(LI-COR,美国),分别选择代表性单作单双粒花生和间作单双粒花生植株主茎倒2或倒3叶,测定其光合速率。每个处理重复3次。

1.3.3 种间竞争相关参数 侵占力(A)表示间套作中一种作物相对于另一种作物的竞争能力——种间相对竞争能力[21]。

拥挤系数为基于单株平均产量或单位面积产量对物种集体行为进行反映,用以评定系统内种间资源竞争力的大小[21],其计算公式:

式中,p表示花生相对玉米的拥挤系数。

1.3.4 产量与偏土地当量比 收获期,花生单、双粒播种均连续选取具有代表性的20株,并测定其长度,计算其取样面积。风干后称量荚果质量,根据其所占面积计算产量。同时调查单株果数。间作花生偏土地当量比(LERP)=间作花生产量/单作花生产量。

1.4 数据处理

采用Microsoft Excel 2010、SPSS 22.0和Origin 2018等软件对数据进行再处理分析与作图。处理间显著性分析采用单因素方差分析(LSD法,=0.05)。采用决定系数(2)来检验Logistic模型精度。

2 结果

2.1 单粒播种和施磷对间作花生种间侵占力的影响

由图2可知,在玉米||花生体系中,花生相对玉米的侵占力均为负值,随着生育天数的增加呈降低趋势;与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生的种间侵占力,提高幅度分别为29.72%—80.85%和38.91%—87.07%。与不施磷相比,施磷明显降低了单粒播种间作花生种间侵占力。

SDIP:间作花生双粒播种的强势株Strong plant of intercropping peanut under double-seed sowing;WDIP:间作花生双粒播种的弱势株Weak plant of intercropping peanut under double-seed sowing;SIP:间作花生单粒播种Intercropping peanut under single-seed sowing。下同The same as below

2.2 单粒播种和施磷对间作花生种间拥挤系数的影响

由图3可知,在玉米||花生体系中,花生相对玉米的拥挤系数随着生育天数的增加呈降低趋势;与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生的种间拥挤系数,提高幅度分别为76.59%—172.02%和244.43%—308.70%。与不施磷相比,施磷明显降低了单粒播种间作花生种间拥挤系数。

图3 花生单粒播种和施磷对间作花生种间拥挤系数的影响

2.3 单粒播种和施磷对间作花生光合性能的影响

由表1可以看出,在玉米||花生体系中,单粒播种能提高花生功能叶的净光合速率(n)、气孔导度(s)、蒸腾速率(r),在饱果期提升幅度更为明显。与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了间作花生饱果期功能叶n,提升幅度分别为7.05%—8.36%和17.73%—18.38%;显著提高了间作花生饱果期功能叶r,提升幅度分别为14.20%—30.30%和48.30%—50.62%;与不施磷相比,施磷显著提高单粒播种间作花生功能叶n,提升幅度为7.43%—24.39%。

2.4 单粒播种和施磷对间作花生生长的影响

由图4可知,在玉米||花生体系中,单粒播种可以提高花生的最大生长速率和干物质积累。与花生双粒播种的强势株和弱势株相比,单粒播种提高了间作花生最大生长速率,提高幅度分别为8.52%—25.76%和11.80%—78.69%,显著提高生育后期干物质积累,提升幅度分别为13.40%—42.45%和31.20%—87.36%。与不施磷相比,施磷对单粒播种间作花生的最大生长速率和干物质积累均有促进作用,提高幅度分别为39.66%—68.80%和6.53%— 56.27%。

Vmax:花生最大生长速率Maximum growth rate of peanut

表1 单粒播种和施磷对间作花生功能叶光合性能的影响

SDSP:单作花生双粒播种的强势株Strong plant of sole peanut under double-seed sowing;WDSP:单作花生双粒播种的弱势株Week plant of sole peanut under double-seed sowing;SSP:单作花生单粒播种Sole peanut under single-seed sowing。同一列数据后不同小写字母表示处理间差异显著Different lowercase letters after the data in the same column mean significant difference among treatments (<0.05)。下同The same as below

2.5 单粒播种和施磷对间作花生干物质积累与分配的影响

由表2可知,在玉米||花生体系中,单粒播种会增加花生干物质在荚果中的分配比例,降低茎叶中的分配比例。与花生双粒播种的强势株和弱势株相比,显著提高干物质向荚果的分配比例,提高幅度分别为7.66%— 12.14%和14.09%—22.16%,向茎和叶中的分配比例分别降低2.81%—9.88%和7.74%—17.56%。施磷后,单粒播种间作花生向荚果的分配比例明显高于不施磷。

2.6 单粒播种和施磷对间作花生干物质转移与贡献的影响

由表3可知,在玉米||花生体系中,单粒播种能提高花生茎、叶中干物质转移量、转移率以及贡献率。与花生双粒播种的强势株和弱势株相比,单粒播种显著提高了茎、叶干物质对荚果的贡献率,提升幅度为14.58%—24.63%和47.45%—128.33%。施磷提高了单粒播种间作花生茎对荚果的贡献率,降低了叶对荚果的贡献率。

表2 花生单粒播种和施磷对间作花生干物质积累与分配的影响

表3 花生单粒播种和施磷对间作花生干物质转移与贡献的影响

2.7 单粒播种和施磷对间作花生产量构成及偏土地当量比的影响

由表4可知,在玉米||花生体系中,单粒播种可以提高花生单株果数、百果重、产量和偏土地当量比。与花生双粒播种相比,单粒播种显著提高了间作花生的单株果数、百果重和产量,提升幅度分别为61.36%—146.19%、6.55%—19.35%和18.84%—33.32%,明显提高间作花生偏土地当量比。与不施磷相比,施磷显著提高了单粒播种花生的单株果数和产量,提升幅度为19.55%—60.00%和20.17%—63.39%。年际间方差分析表明,磷水平和种植模式互作对花生产量的影响均达极显著水平,而年份、磷水平和种植模式间的互作差异不显著,说明磷水平和种植模式对花生产量有促进作用。

表4 花生单粒播种和施磷对间作花生产量构成及偏土地当量比的影响

DSP:双粒播种的单作花生Double-seed sowing of sole peanut;DIP:双粒播种的间作花生Double-seed sowing of intercropping peanut;DSP与DIP括号中的数值分别代表强势株与弱势株对应值The values in DSP and DIP brackets represent the corresponding values of strong and weak plants, respectively;DSP与DIP的单株果数以及百果重为强势株与弱势株的平均值,DSP与DIP的株数以及产量为强势株与弱势株之和The number of pods per plant and 100-pod weight of DSP and DIP were the average value of strong and weak plants, the number of plants and yield were the sum value of strong and weak plants;同一列中数据后不同小写字母表示同一年份处理间差异显著Different lowercase letters after the data in the same column mean significant difference among treatments at 0.05 level in the same year (<0.05);**差异极显著Extremely significant difference (<0.01);*差异显著Significant difference (<0.05);NS:无显著性差异Non-significant difference (>0.05)

3 讨论

3.1 单粒播种与施磷对间作花生种间竞争力的影响

间作优势主要来源于作物种间相互竞争、互补效应,其竞争、互补效应因作物物种不同而存在差异[22]。协调物种间的竞争、增强互补效应,可以提高资源的利用率、增加系统产量,利于促进农业的可持续发展[23]。已有研究报道,玉米||花生地上、地下存在明显的种间作用,其地上种间作用改善田间小气候,提高玉米功能叶的光饱和点和CO2羧化固定能力、花生功能叶对弱光吸收转化能力[2-3],分层、立体高效利用光能[10];其地上种间作用表现为具有明显的氮、磷营养间作优势和种间铁氮互惠利用效应,间作优势显著[11-12],但在其共处期,花生由于受玉米遮荫影响而处于种间光竞争劣势[4,12],限制花生进一步高产。本研究表明,花生单粒播种明显提高间作花生相对玉米的侵占力和拥挤系数(图2、图3),证明通过花生单粒播种能缓解玉米||花生体系中种间竞争,提高花生种间竞争力。这与单粒播种能缓解因双粒播种之间存在的种内竞争密切相关。因为,相较花生双粒播种,单粒播种能有效地减缓种内竞争,协调个体与种群之间的关系[24],降低群体种内的资源竞争[14]。这与REN等[25]研究发现,在玉米||大豆体系中缓解种内竞争,能协调种间关系的研究结果相一致,因为种内关系的改善有利于提高种间互补效应[19,26],提高作物获取资源的能力[27]。研究还发现,由于磷肥促进间作玉米生长,增大其叶面积[28],加剧玉米对花生的光竞争[2],造成在施磷条件下,单粒播种间作花生相对玉米的侵占力和拥挤系数均小于不施磷,但高于施磷条件下的双粒播种花生(图2、图3)。

3.2 单粒播种与施磷对间作花生生长及产量的影响

在玉米||花生体系中,生育后期花生光能利用不足,是制约其增产的主要原因[2]。通过化学调控和增施磷肥可以改善间作花生光照环境,促进其生长和产量的提高[28]。本研究表明,花生单粒播种较双粒播种显著提高了间作花生功能叶的净光合速率,促进花生生长,增加其干物质的积累。这与单粒播种增强间作花生种间竞争能力,从而改善玉米、花生内部光竞争密切相关。因为与双粒播种相比,单粒播种的株距大于一穴双株之间的株距,优化群体结构[17],改善花生冠层光环境,提高其净光合速率[15]。对多数高矮作物间作体系研究认为,通过改善复合群体冠层内部光环境,提高低位作物光照,能提高其光合速率,促进生长[29-31]。磷肥直接参与花生光合作用的光合磷酸化和碳同化过程,提高光能利用率[10],促进花生干物质积累[26],本研究中,与不施磷相比,施磷肥能提高间作花生光合速率,促进花生生长。本研究还发现,单粒播种能促进花生干物质向荚果的分配,提高茎、叶干物质对荚果的贡献率,进而提高间作花生产量和偏土地当量比。这与ZHANG等[32]在单作中单粒播种可以促进花生干物质向荚果分配的研究结果一致。由于磷肥能促进地下种间互作而提高间作花生荚果产量[12],故在本研究中,表现出施磷较不施磷能促进间作花生干物质向荚果分配,提高间作花生产量、增大间作优势。另较2021年,2022年延期玉米播种能提高间作花生产量和间作优势,这与赵建华等[22]研究结果相反,造成这一现象的原因关键在于两地所处生态环境不同。本试验区适当延迟玉米播期更利于玉米||花生高产。

4 结论

在玉米||花生体系中,可以通过花生单粒播种缓解双粒播种种内矛盾,协调玉米||花生体系中的种间作用,增强花生种间竞争能力,提高荚果产量和间作优势。其关键机理在于花生单粒播种较双粒播种显著提高间作花生相对玉米的侵占力和拥挤系数,提高花生净光合速率,促进生长,增加其干物质的积累及其向荚果分配。施用磷肥对其具有正向调控效应。

[1] ZHAO X H, DONG Q Q, HAN Y, ZHANG K Z, SHI X L, YANG X , YUAN Y, ZHOU D Y, WANG K, WANG X G, JIANG C J, LIU X B, ZHANG H, ZHANG Z M, YU H Q. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiology, 2022, 22: 14.

[2] 焦念元, 宁堂原, 赵春, 王芸, 史忠强, 侯连涛, 付国占, 江晓东, 李增嘉. 玉米花生间作复合体系光合特性的研究. 作物学报, 2006, 32(6): 917-923.

JIAO N Y, NING T Y, ZHAO C, WANG Y, SHI Z Q, HOU L T, FU G Z, JIANG X D, LI Z J. Characters of photosynthesis in intercropping system of maize and peanut. Acta Agronomica Sinica, 2006, 32(6): 917-923. (in Chinese)

[3] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.

JIAO N Y, YANG M K, NING T Y, YIN F, XU G W, FU G Z, LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)

[4] WANG Q, SUN Z X, BAI W, ZHANG D S, ZHANG Y, WANG R N, VAN DER WERF W, EVERS J B, STOMPH T J, GUO J P, ZHANG L Z. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 432-446.

[5] ZHANG D S, DU G J, SUN Z X, BAI W, WANG Q, FENG L S, ZHENG J M, ZHANG Z, LIU Y, YANG S, YANG N, FENG C, CAI Q, EVERS J B, VAN DER WERF W, ZHANG L Z. Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018, 94: 1-11.

[6] 唐秀梅, 黄志鹏, 吴海宁, 刘菁, 蒋菁, 唐荣华. 玉米/花生间作条件下土壤环境因子的相关性和主成分分析. 生态环境学报, 2020, 29(2): 223-230.

TANG X M, HUANG Z P, WU H N, LIU J, JIANG J, TANG R H. Correlation and principal component analysis of the soil environmental factors in maize/peanut intercropping conditions. Ecology and Environmental Sciences, 2020, 29(2): 223-230. (in Chinese)

[7] REN J H, ZHANG L Z, DUAN Y, ZHANG J, EVERS J B, ZHANG Y, SU Z C, VAN DER WERF W. Intercropping potato (L.) with hairy vetch () increases water use efficiency in dry conditions. Field Crops Research, 2019, 240: 168-176.

[8] HAGE-AHMED K, KRAMMER J, STEINKELLNER S. The intercropping partner affects arbuscular mycorrhizal fungi andf. sp.interactions in tomato. Mycorrhiza, 2013, 23(7): 543-550.

[9] ZHANG Y, DUAN Y, NIE J Y, YANG J, REN J H, VAN DER WERF W, EVERS J B, ZHANG J, SU Z C, ZHANG L Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225: 105778.

[10] 王飞, 刘领, 武岩岩, 李雪, 孙增光, 尹飞, 焦念元, 付国占. 玉米花生间作改善花生铁营养提高其光合特性的机理. 植物营养与肥料学报, 2020, 26(5): 901-913.

WANG F, LIU L, WU Y Y, LI X, SUN Z G, YIN F, JIAO N Y, FU G Z. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 901-913. (in Chinese)

[11] JIAO N Y, WANG F, MA C, ZHANG F S, JENSEN E S. Interspecific interactions of iron and nitrogen use in peanut (L.)-maize (L.) intercropping on a calcareous soil. European Journal of Agronomy, 2021, 128: 126303.

[12] JIAO N Y, WANG J T, MA C, ZHANG C C, GUO D Y, ZHANG F S, JENSEN E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. The Crop Journal, 2021, 9(6): 1460-1469.

[13] 张佳蕾, 郭峰, 苗昊翠, 李利民, 杨莎, 耿耘, 孟静静, 李新国, 万书波. 单粒精播对高产花生株间竞争缓解效应研究. 花生学报, 2018, 47(2): 52-58.

ZHANG J L, GUO F, MIAO H C, LI L M, YANG S, GENG Y, MENG J J, LI X G, WAN S B. Study on relieving inter-plant competition by single seed sowing of high yield peanut. Journal of Peanut Science, 2018, 47(2): 52-58. (in Chinese)

[14] LIANG X Y, GUO F, FENG Y, ZHANG J L, YANG S, MENG J J, LI X G, WAN S B. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of. Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.

[15] 梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26(12): 3700-3706.

LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing on canopy microenvironment,photosynthetic characteristics and pod yield of peanut (). Chinese Journal of Applied Ecology, 2015, 26(12): 3700-3706. (in Chinese)

[16] CHEN T, ZHANG J, WANG X, ZENG R, CHEN Y, ZHANG H, WAN S, ZHANG L. Monoseeding increases peanut (L.) yield by regulating shade-avoidance responses and population density. Plants, 2021, 10(11): 2405.

[17] YANG S, ZHANG J, GENG Y, TANG Z, WANG J, GUO F, MENG J, WANG Q, WAN S, LI X. Transcriptome analysis reveals the mechanism of improving erect-plant-type peanut yield by single- seeding precision sowing. PeerJ, 2021, 9: e10616.

[18] 万书波, 张佳蕾, 张智猛. 花生种植技术的重大变革——单粒精播. 中国油料作物学报, 2020, 42(6): 927-933.

WAN S B, ZHANG J L, ZHANG Z M. Great change of peanut planting technology: single seed sowing. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 927-933. (in Chinese)

[19] ADLER P B, SMULL D, BEARD K H, CHOI R T, FURNISS T, KULMATISKI A, MEINERS J M, TREDENNICK A T, VEBLEN K E. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters, 2018, 21(9): 1319-1329.

[20] 崔党群. Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005, 24(1): 112-115.

CUI D Q. Analysis and making good fitting degree test for Logistic curve regression equation. Mathematical Statistics and Management, 2005, 24(1): 112-115. (in Chinese)

[21] GHOSH P K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research, 2004, 88(2/3): 227-237.

[22] 赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响. 中国生态农业学报, 2018, 26(11): 1634-1642.

ZHAO J H, SUN J H, LI W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642. (in Chinese)

[23] WU K X, FULLEN M A, AN T X, FAN Z W, ZHOU F, XUE G F, WU B Z. Above- and below-ground interspecific interaction in intercropped maize and potato: a field study using the ‘target’ technique. Field Crops Research, 2012, 139: 63-70.

[24] KOKKORIS G D, TROUMBIS A Y, LAWTON J H. Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 1999, 2: 70-74.

[25] REN Y, ZHANG L, YAN M, ZHANG Y, CHEN Y, PALTA J A, ZHANG S. Effect of sowing proportion on above- and below-ground competition in maize-soybean intercrops. Scientific Reports, 2021, 11(1): 15760.

[26] CALLAWAY R M, WALKER L R. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology, 1997, 78(7): 1958-1965.

[27] 赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94.

ZHAO J H, SUN J H, CHEN L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Prataculturae Sinica, 2020, 29(1): 86-94. (in Chinese)

[28] 焦念元, 汪江涛, 尹飞, 李亚辉, 付国占, 李友军. 化学调控与施磷肥对玉米花生间作光合物质积累和产量的影响. 江苏农业科学, 2016, 44(4): 99-104.

JIAO N Y, WANG J T, YIN F, LI Y H, FU G Z, LI Y J. Effects of chemical regulation and phosphorus fertilization on photosynthetic material accumulation and yield of intercropped maize and peanut. Jiangsu Agricultural Sciences, 2016, 44(4): 99-104. (in Chinese)

[29] ROBAKOWSKI P, BIELINIS E, SENDALL K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasiveand nativein relation to light environment, competition and allelopathy. Journal of Plant Research, 2018, 131(3): 505-523.

[30] GAO L, XU H, BI H, XI W, BAO B, WANG X, BI C, CHANG Y. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. Plos One, 2013, 8(7): e70739.

[31] 程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, RAZA A, 张熠, AHMAD I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021. 19.005.

CHENG B, LIU W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AHMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752. 2021.19.005. (in Chinese)

[32] ZHANG J L, GENG Y, GUO F, LI X G, WAN S B. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.

Regulation of Single-seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut

JIANG WenYang1, CHEN JunNan1, ZAN ZhiMan1, WANG JiangTao1, ZHENG Bin1, LIU Ling1, LIU Juan2, JIAO NianYuan1

1College of Agriculture, Henan University of Science and Technology, Luoyang 471000, Henan;2Industrial Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002

【Background】Maize () intercropping with peanut () (maize||peanut) has outstanding interspecific effects between aboveground and underground, and the intercropping advantage in yield is prominent, which plays an important role in alleviating the conflict between oil and grain in our country. However, peanut is at the disadvantage of interspecific competition, which becomes the bottleneck restricting the further improvement of intercropping advantage.【Objective】The objective of this study is to explore the regulation measures and mechanism of enhancing peanut interspecific competition inmaize||peanut system, and to provide theoretical basis and technical support for maize||peanut high-yield cultivation.【Method】Maize ‘Zhengdan 958’ and peanut ‘Huayu 16’ were used as test materials in the experimental farm of Henan University of Science and Technology from 2021 to 2022. A completely randomized block experiment with three factors: planting pattern, peanut sowing method and phosphorus application rate was set up. In other words, planting patterns were peanut monoculture and maize||peanut, peanut seeding methods were single-seed sowing and double-seed sowing, and phosphorus application rates were 0 (P0) and 180 kg P2O5·hm-2(P180). Peanut double-seed sowing of maize||peanut was used as control, effects of peanut single-seed sowing on interspecific competitiveness of intercropping peanut over maize, net photosynthetic rate, maximum growth rate, dry matter accumulation and distribution, and yield advantage of intercropping were studied.【Result】Compared to the strong and weak plants with double-seed sowing peanut, single-seed sowing significantly increased the aggressivity and crowding coefficient of intercropping peanut over maize, the aggressivity increased by 29.72%-80.85% and 38.91%-87.07%, respectively, and the crowding coefficient increased by 76.59%-172.02% and 244.43%-308.70%, respectively. The net photosynthetic rate of intercropping peanut with single-seed sowing was significantly higher than that with double-seed sowing, and the maximum growth rate was significantly higher than that of strong and weak plants with double-seed sowing, respectively. The dry matter in the later growth period was significantly increased, dry matter distribution ratio to pod was increased, the contribution rate of stem and leaf dry matter to pod was improved, compared to the strong and weak plants with double-seed sowing peanut. The yield and advantage of intercropping with single seeding were higher than those with double seeding, and the yield was 18.84%-33.32% higher, the difference was significant. Compared with no phosphorus fertilizer, phosphorus application significantly increased the net photosynthetic rate and maximum growth rate of intercropping peanut, and promoted the dry matter accumulation and increased yield of intercropping peanut.【Conclusion】Peanut single-seed sowing can improve intercropping peanut yield and intercropping advantage, the key lies in the fact that single-seed sowing can enhance interspecific competitiveness of intercropping peanut compare with double-seed sowing, significantly increase the net photosynthetic rate, and promote the accumulation of dry matter and distribution to the pod. Phosphorus application promotes the growth and development of intercropping peanut under single-seed sowing.

maize||peanut; interspecific competition; strong plant and weak plant; maximum growth rate; yield; single-seed sowing; phosphorus fertilizer

10.3864/j.issn.0578-1752.2023.23.008

2023-03-07;

2023-03-31

国家自然科学基金(32272231,32201922)、国家现代农业产业技术体系(CARS-13)、河南省科技攻关项目(222103810056,212102110282)

姜文洋,E-mail:3463954057@qq.com。通信作者焦念元,E-mail:jiaony1@163.com

(责任编辑 岳梅)

猜你喜欢
施磷单粒种间
干旱条件对鬼针草和醉鱼草种间相互作用及生长的影响
三峡库区支流花溪河浮游植物种间关联及影响因子分析
家蚕种质资源单粒缫丝成绩评价
玉米单粒播种子质量标准实施我国精量化播种步入规范化新时代
家蚕单粒缫丝质评价体系初报
施磷方式对杉木幼苗光合能力及磷素分配的影响
不同施磷水平下甘薯干物质积累及其氮磷钾养分吸收特性
江苏省宜兴市茶园秋季杂草种间生态关系及群落分类
营养盐输入方式对3种微藻生长及种间竞争的影响
施磷方式对高产春玉米磷素吸收与磷肥利用的影响