张 宝, 刘 佳, 匡维米, 蒋 礼, 李勇军, 李 悦*
( 1. 贵阳市妇幼保健院/贵阳市儿童医院 药学部, 贵阳 550003; 2. 贵州医科大学 贵州省药物制剂重点实验室, 贵州 贵安 561113; 3. 贵州医科大学 药学院, 贵州 贵安 561113 )
蛇含委陵菜(Potentillakleiniana)为蔷薇科委陵菜属一年生、二年生或多年生宿根草本植物,又名五匹风、五皮风、地五甲、五爪龙等,在我国主要分布于广西、贵州、云南、四川等地(中国科学院中国植物志编辑委员会,1985;贵州省中药材、民族药材质量标准编审委员会,2003)。蛇含委陵菜味苦、性微寒,归肝、肺经,具有祛风止咳、搜风剔邪、清热解毒等功效,在贵州省苗族、布依族及侗族等少数民族地区常用于治疗肺炎、风湿关节炎等炎性疾病(罗迎春和孙庆文,2013)。目前对蛇含委陵菜的化学成分及生物活性鲜有研究,已报道的化学成分主要包括三萜类和黄酮类(黄易安,2008;李胜华等,2011),生物活性侧重于提取物的抗菌、抗炎、降糖活性筛选(李胜华等,2014;张晨光等,2018;Liu et al., 2019),其抗炎物质基础不明确。为了进一步丰富该药用植物的化学成分信息,明确其抗炎活性物质,促进其开发利用,本研究以黔产蛇含委陵菜全株为研究对象,采用现代色谱分离技术、光谱学手段及药理学方法,拟探讨:(1)蛇含委陵菜60%乙醇提取物的化学成分;(2)分离得到的化合物的体外抗炎活性。
蛇含委陵菜药材采自贵州省贵阳市花溪区高坡乡,经贵州医科大学刘春花副教授鉴定为蔷薇科植物蛇含委陵菜(Potentillakleiniana)全草(图1)。标本保存于贵州医科大学贵州省药物制剂重点实验室,凭证号为NO.20210416。
高分辨质谱仪(Theemo Fisher Q Exactive-Plus 四级杆-静电场轨道肼,Theemo Fisher Scientific公司,美国);核磁共振波谱仪(Bruker AV-600型,Bruker公司,德国;JEOL-ECS-400 MHz型,JEOL,日本);旋转蒸发仪(BUCHIR-300型,BUCHI公司,瑞士);超纯水机(KZ-20L型,上海科制环保设备有限公司);MCI(CHP20/P120,三菱公司,日本);D-101大孔树脂(天津市海光化工有限公司);柱层析硅胶及硅胶GF254预制板(青岛海洋化工厂);Sephadex LH-20(Pharmacia Biotech公司,瑞士);Toyopearl HW 40F(JEOL,日本);电热恒温培养箱(DHP-9052型,上海一恒科学仪器有限公司)。
DMEM高糖培养基、胎牛血清(fetal bovine serum, FBS)(Gibco公司,美国);CCK-8试剂盒(GlpBio公司,美国);NO试剂盒(南京建成生物工程研究所);脂多糖(lipopolysaccharide, LPS)(北京索莱宝科技有限公司);地塞米松(上海甄准生物科技有限公司);小鼠巨噬细胞RAW 264.7(美国模式培养物集存库,美国)。其余化学试剂均为分析纯。
图 1 蛇含委陵菜标本Fig. 1 Sample of Potentilla kleiniana
取蛇含委陵菜干燥全草15 kg,粉碎后用乙醇-水(60∶40,V/V)回流提取3次(2、1.5、1.5 h),提取液合并后减压浓缩至浸膏(2.1 kg)。浸膏加入适量蒸馏水,超声振荡分散,经D-101大孔树脂,用乙醇-水(0∶100,50∶50,95∶5,V/V)洗脱,收集各部分洗脱液,减压浓缩。其中,50%乙醇部位(428 g)经正相硅胶柱层析(硅胶:200~300目。洗脱剂:氯仿-甲醇50∶1~1∶1,V/V)洗脱,得到9个组分(Fr.A~Fr.I)。
Fr.B减压浓缩并放至室温后析出少量难溶性粉末状沉淀,过滤沉淀备用,滤液经正相硅胶柱层析(硅胶:300~400目。洗脱剂:二氯甲烷-甲醇100∶1,V/V)得到Fr.B1~Fr.B3。Fr.B3经正相硅胶柱层析(硅胶:300~400目。洗脱剂:石油醚-丙酮20∶1,V/V)得到Fr.B3.1~Fr.3.6。Fr.B3.6依次经过Sephadex LH-20(二氯甲烷-甲醇 1∶1,V/V)、正相硅胶(硅胶:300~400目。洗脱剂:二氯甲烷-甲醇 100∶1,V/V)柱层析纯化,得化合物1(10.4 mg)、6(15.1 mg)。
Fr.C经正相硅胶柱层析(硅胶:200~300目。洗脱剂:石油醚-乙酸乙酯20∶1~1∶1,V/V)梯度洗脱得到Fr.C1~Fr.C4。Fr.C2~Fr.C4经反复正相硅胶、Sephadex LH-20(二氯甲烷-甲醇 1∶1,V/V)、Toyopearl HW-40F(二氯甲烷-甲醇 1∶1,V/V)、ODS(甲醇-水 80∶20~95∶5,V/V)柱层析纯化,最终得化合物2(11.8 mg)、3(13.2 mg)、4(2.9 mg)、5(11.3 mg)、8(6.3 mg)、11(5.3 mg)。
Fr.D经MCI柱层析,乙醇-水(30∶70、40∶60、50∶50、60∶40、70∶30、80∶20、90∶10、100∶0,V/V)梯度洗脱得到Fr.D1~Fr.D8。Fr.D2减压浓缩并放至室温后析出少量难溶性粉末状沉淀,过滤沉淀备用,滤液经正相硅胶柱层析(硅胶:300~400目。洗脱剂:二氯甲烷-甲醇 20∶1,V/V)得6个组分,其中Fr.D2.3~Fr.D2.4经反复Sephadex LH-20(甲醇)、ODS(甲醇-水 30∶70~60∶40,V/V)、Toyopearl HW-40F(甲醇)纯化,得化合物7(7.2 mg)、12(12.3 mg)。Fr.D4经正相硅胶柱层析(硅胶:300~400目。洗脱剂:二氯甲烷-甲醇 10∶1~2∶1,V/V)得9个组分Fr.D4.1~Fr.D4.9,其中Fr.D4.5依次经Sephadex LH-20(甲醇)、半制备HPLC (22%甲醇-水溶液)洗脱,得化合物14(3.8 mg)、15(4.1 mg)。
Fr.F经Sephadex LH-20凝胶柱色谱(甲醇)得到Fr.F1~Fr.F6,其中Fr.F2经Sephadex LH-20凝胶柱色谱(甲醇)洗脱得Fr.F2.1~Fr.F2.2。Fr.F2.2经反复正相硅胶(硅胶:300~400目。洗脱剂:二氯甲烷-甲醇 10∶1~2∶1,V/V)、Sephadex LH-20(甲醇)、Toyopearl HW-40F(甲醇)柱层析纯化,得化合物9(19.0 mg)、10(95.9 mg)、13(5.5 mg)。
安全浓度考察:采用CCK-8法考察各化合物的安全浓度,分别给予不同浓度的化合物溶液作用于RAW 264.7细胞,24 h后检测细胞活力,通过细胞存活率确定化合物的安全浓度范围。
取对数生长期RAW 264.7细胞(调整细胞浓度为每毫升3×105个)接种于96孔板中,每孔100 μL,实验设置空白对照组、模型组、地塞米松组(阳性药组)和药物组(待测化合物),每组设置3个平行孔,于培养箱中培养24 h。细胞同时用0.25 μg·mL-1LPS和不同浓度梯度的待测化合物刺激24 h后,收集上清液,按照试剂盒说明书检测方法测定NO的含量,计算NO释放抑制率。
化合物1白色无定型粉末,易溶于氯仿、吡啶、DMSO,难溶于甲醇、丙酮。HR-ESI-MSm/z: 899.803 5 [M+Na]+(C56H108O6Na,理论值:899.803 8),结合1H-NMR和13C-NMR推测分子式为C56H108O6。1H-NMR (400 MHz, CDCl3) 谱显示108个质子信号,从低场至高场区依次为1个次甲基质子信号 [δ: 5.24 (1H, m, H-2)]、49个亚甲基质子信号 [δ: 4.27 (2H, dd,J=12.0, 4.8 Hz, H-1a, 3a), 4.12 (2H, dd,J=12.0, 6.0 Hz, H-1b, 3b), 2.29 (6H, m, H-2′, 2″, 2‴), 1.58 (6H, m, H-3′, 3″, 3‴), 1.24 (82H, overlap, H-4′-17′, 4′′-16″, 4‴-17‴)]、3个甲基质子信号 [δ: 0.85 (9H, t,J=6.8 Hz, H-18′, 17″, 18‴) ]。由13C-NMR和HMQC谱推测,该结构中包含3个羰基碳信号 [δ: 173.3 (C-1′, 1‴) , 172.9 (C-1″)]、2个连氧亚甲基碳信号 [δ: 62.1 (C-1, 3)]、1个连氧次甲基碳信号 [δ: 68.8 (C-2)]、3个甲基碳信号 [δ: 14.1 (C-18′, 17″, 18‴)],余下碳信号为亚甲基信号。该化合物的1H-NMR 和13C-NMR数据与文献(Abdulmumeen et al.,2017)报道的化合物1,2,3-propanetriyl tris(hexadecanoate)相似,区别仅在于化合物1高场区多5个-CH2-信号。综合HR-ESI-MS、1H-NMR和13C-NMR数据分析,推测化合物为2-(heptadecanoyloxy)propane-1,3-diyl distearate。文献检索未发现2-(heptadecanoyloxy)propane-1,3-diyl distearate的核磁数据,通过HMQC和HMBC进一步确证该化合物的结构,具体见表1和图2。HMBC谱显示,H-1b/C-1′、H-3b/C-1‴、H-1a/C-1′、H-3a/C-1‴、H-1b/C-2和H-3b/C-2可确证并归属甘油三脂基本骨架。H-2′、2″、2‴分别与C-1′、1″、1‴相关,H-3′、3″、3‴分别与C-1′、1″、1‴和C-4′、4″、4‴相关,H-18′、17″、18‴分别与C-17′、16″、17‴和C-16′、15″、16‴相关(图3),可确证烷烃片段的连接并归属其核磁数据。
化合物2透明油状物。HR-ESI-MSm/z: 327.217 7 [M-H]-(C18H31O5,理论值:327.217 7),分子式为C18H32O5。1H-NMR (400 MHz, CD3OD)δ: 5.57 (2H, m, H-10, 11), 5.41(1H, m, H-16), 5.35 (1H, m, H-15), 3.89 (1H, dd,J=10.8, 6.0 Hz, H-9), 3.79 (1H, t,J=4.8 Hz, H-13), 3.27 (1H, m, H-12), 2.19 (1H, m, H-14a), 1.97 (2H, m, H-17), 1.92 (1H, m, H-14b), 1.88 (2H, m, H-2), 1.39 (2H, m, H-4), 1.32 (2H, m, H-8), 1.25 (2H, m, H-3), 1.21 (6H, m, H-5, 6, 7), 0.90 (3H, t,J=7.8 Hz, H-18);13C-NMR (100 MHz, CD3OD)δ: 177.1 (C-1), 134.5 (C-10), 131.8 (C-15), 129.8 (C-11), 126.7 (C-16), 74.0 (C-12), 73.7 (C-13), 70.7 (C-9), 38.0 (C-2), 37.4 (C-8), 30.2 (C-14), 29.2 (C-5), 29.1 (C-6, 7), 26.3 (C-4), 24.9 (C-3), 20.2 (C-17), 14.2 (C-18)。以上数据与文献(李帅等,2003)报道基本一致,故鉴定为9,12,13-三羟基-10,15-十八碳二烯酸。
表 1 化合物1的1H-NMR (400 MHz, CDCl3)和13C-NMR (100 MHz, CDCl3) 数据Table 1 1H-NMR (400 MHz, CDCl3) and 13C-NMR (100 MHz, CDCl3) data of Compound 1
化合物3淡黄色粉末。HR-ESI-MSm/z: 341.233 1 [M-H]-(C19H33O5,理论值:341.232 3), 分子式为C19H34O5。1H-NMR (400MHz, CD3OD)δ: 5.69 (2H, m, H-10, 11), 5.45 (2H, m, H-15, 16), 4.06 (1H, m, H-9), 3.95 (1H, m, H-12), 3.64 (3H, s, -OCH3), 3.45 (1H, m, H-13), 2.31 (3H, m, H-2, 14a), 2.08 (3H, m, H-14b, 17), 1.59 (2H, m, H-3), 1.49 (2H, m, H-8), 1.32 (8H, s, H-4, 5, 6, 7), 0.96 (3H, t,J= 7.6 Hz, H-18);13C-NMR (100 MHz, CD3OD)δ: 176.0 (C-1), 136.5 (C-10), 134.3 (C-15), 131.1 (C-11), 126.4 (C-16), 75.9 (C-12), 75.8 (C-13), 73.0 (C-9), 52.0 (-OCH3), 38.3 (C-8), 34.8 (C-2), 31.5 (C-14), 30.6 (C-7), 30.4 (C-6), 30.2 (C-5), 26.5 (C-4), 26.0 (C-3), 21.7 (C-17), 14.6 (C-18)。以上数据与文献(杨炳友等,2017)报道基本一致,故鉴定为9,12,13-三羟基-10,15-十八碳二烯酸甲酯。
图 2 化合物 1-15 化学结构式Fig. 2 Chemical structures of compounds 1-15
图 3 化合物1主要的HMBC相关Fig. 3 Key HMBC correlations of Compound 1
化合物4黄色油状物。HR-ESI-MSm/z: 395.331 6 [M+H]+(C28H43O,理论值:395.330 8),分子式为C28H42O。1H-NMR (400 MHz, CD3OD)δ: 7.45 (2H, d,J=8.8 Hz, H-6, 6′), 7.45 (2H, d,J=2.4 Hz, H-3, 3′), 7.21 (2H, dd,J=8.8, 2.4 Hz, H-5, 5′), 1.33 (18H, s, H-12-14, H-12′-14′), 1.30 (18H, s, H-8-10, H-8′-10′);13C-NMR (100 MHz, CD3OD)δ: 149.1 (C-2, 2′), 148.8 (C-1, 1′), 139.9 (C-4), 139.8 (C-4′), 125.9 (C-3, 3′), 125.2 (C-5, 5′), 120.0 (C-6, 6′), 35.9 (C-7, 7′), 35.5 (C-11, 11′), 31.8 (C-8-10, 8′-10′), 30.8 (C-12-14, 12′-14′)。以上数据与文献(Cao et al., 2020)报道基本一致,故鉴定为2,2′-氧代双(1,4-二叔丁苯)。
化合物5黄色粉末。HR-ESI-MSm/z: 269.045 5 [M-H]-(C15H9O5,理论值:269.045 6),分子式为C15H10O5。1H-NMR (400 MHz, DMSO-d6)δ: 12.03 (1H, s, 1-OH), 11.96 (1H, s, 8-OH), 11.27 (1H, s, 6-OH), 7.46 (1H, s, H-4), 7.13 (1H, s, H-2), 7.10 (1H, d,J= 2.4 Hz, H-5), 6.57 (1H, d,J= 2.4 Hz, H-7), 2.40 (3H, s, -CH3);13C-NMR (100 MHz, DMSO-d6)δ: 189.6 (C-9), 181.2 (C-10), 165.5 (C-6), 164.4 (C-8), 161.4 (C-1), 148.2 (C-3), 135.0 (C-10a), 132.7 (C-4a), 124.1 (C-2), 120.4 (C-4), 113.3 (C-9a), 108.9 (C-8a), 108.7 (C-5), 107.9 (C-7), 21.5 (-CH3)。以上数据与文献(Kharlamova, 2007)报道基本一致,故鉴定为大黄素。
化合物6黄色粉末。HR-ESI-MSm/z: 253.050 6 [M-H]-(C15H9O4,理论值:253.049 5),分子式为C15H10O4。1H-NMR (400 MHz, DMSO-d6)δ: 7.79 (1H, dd,J=8.4, 7.6 Hz, H-6), 7.69 (1H, dd,J=7.6, 1.2 Hz, H-5), 7.53 (1H, d,J=1.2 Hz, H-4), 7.37 (1H, dd,J=8.4, 1.2 Hz, H-7), 7.20 (1H, d,J=1.2 Hz, H-2);13C-NMR (100 MHz, DMSO-d6)δ: 191.6 (C-9), 181.4 (C-10), 161.5 (C-8), 161.3 (C-1), 149.1 (C-3), 137.3 (C-6), 133.3 (C-10a), 133.0 (C-4a), 124.4 (C-2), 124.0 (C-7), 120.5 (C-4), 119.3 (C-5), 115.8 (C-8a), 113.7 (C-9a), 21.6 (-CH3)。以上数据与文献(Zhou et al., 2006)报道基本一致,故鉴定为大黄酚。
化合物7白色粉末。HR-ESI-MSm/z: 393.187 9 [M+Na]+(C19H30O7Na,理论值:393.188 4),分子式为C19H30O7。1H-NMR (400 MHz, CD3OD)δ: 5.87 (1H, s, H-4), 5.77 (1H, dd,J=15.2, 6.4 Hz, H-8), 5.63 (1H, dd,J=15.2, 9.2 Hz, H-7), 4.38 (1H, m, H-9), 3.81 (1H, dd,J=11.6, 2.0 Hz, H-6′α), 3.65 (1H, dd,J=11.6, 5.2 Hz, H-6′β), 2.67 (1H, d,J=9.2, H-6), 2.42 (1H, d,J=16.8, H-2α), 2.04 (1H, d,J=16.8, H-2β), 1.93 (3H, d,J=0.8, H-13), 1.28 (3H, d,J=6.4, H-10), 1.00 (3H, s, H-11), 1.02 (3H, s, H-12);13C-NMR (100 MHz, CD3OD)δ: 202.0 (C-3), 165.8 (C-5), 138.2 (C-8), 128.8 (C-7), 126.1 (C-4), 102.4 (C-1′), 78.1 (C-5′), 78.0 (C-3′), 77.0 (C-9), 75.2 (C-2′), 71.5 (C-4′), 62.7 (C-6′), 56.7 (C-6), 37.1 (C-1), 28.0 (C-12), 27.6 (C-16), 23.8 (C-13), 21.0 (C-10)。以上数据与文献(彭冰等,2014)报道基本一致,故鉴定为(6R,9R)-3-酮-α-紫罗兰醇-9-O-β-D-吡喃葡萄糖苷。
化合物8白色粉末。HR-ESI-MSm/z: 503.260 7 [M+Na]+(C26H40O8Na,理论值:503.261 5),分子式为C26H40O8。1H-NMR (400 MHz, C5D5N)δ: 7.15 (1H, t,J=1.6 Hz, H-14), 4.90 (1H, s, H-17b), 4.83 (1H, d,J=7.6 Hz, H-1′), 4.72 (1H, s, H-17a), 4.33 (1H, d,J=9.6 Hz, H-19b), 3.49 (1H, d,J=9.6 Hz, H-19a), 1.19 (3H, s, 18-CH3), 0.64 (3H, s, 20-CH3);13C-NMR (100 MHz, C5D5N)δ: 174.6 (C-16), 148.2 (C-8), 145.4 (C-14), 134.2 (C-13), 107.0 (C-17), 105.5 (C-1′), 78.8 (C-3′), 78.4 (C-5′), 75.4 (C-2′), 72.6 (C-19), 71.8 (C-4′), 70.6 (C-15), 62.9 (C-6′), 56.7 (C-9), 56.2 (C-5), 39.8 (C-4), 39.1 (C-1), 38.8 (C-7), 38.7 (C-10), 36.4 (C-3), 28.2 (C-18), 25.0 (C-12), 24.7 (C-6), 22.1 (C-11), 19.4 (C-12), 15.5 (C-20)。以上数据与文献(Sun et al., 2019)报道基本一致,故鉴定为新穿心莲内酯。
化合物9白色粉末。HR-ESI-MSm/z: 217.068 0 [M+Na]+(C7H14O6Na,理论值:217.068 3),分子式为C7H14O6。1H-NMR (400 MHz, CD3OD)δ: 4.02 (1H, d,J=4.0 Hz, H-3), 3.88 (1H, dd,J=6.4, 4.4 Hz, H-4), 3.83 (1H, m, H-5), 3.73 (1H, t,J=3.2 Hz, H-1a), 3.69 (1H, s, H-1b), 3.62 (2H, m, H-6), 3.30 (3H, s, -OCH3);13C-NMR (100 MHz, CD3OD)δ: 109.2 (C-2), 84.6 (C-5), 82.5 (C-3), 78.9 (C-4), 62.8 (C-6), 60.5 (C-1), 48.9 (-OCH3)。以上数据与文献(尹宏权等,2006)报道基本一致,故鉴定为甲基-α-D-呋喃果糖苷。
化合物10白色固体。HR-ESI-MSm/z: 343.121 6 [M+H]+(C12H23O11,理论值:343.123 5),分子式为C12H22O11。1H-NMR (400 MHz, CD3OD)δ: 4.87 (1H, overlap, H-1′), 4.13 (2H, overlap, H-4, 5), 4.01 (1H, overlap, H-3), 3.90 (2H, overlap, H-2′, 3′), 3.78 (2H, overlap, H-6b, 6′b), 3.74 (2H, overlap, H-4′, 5′), 3.63 (1H, overlap, H-1), 3.45 (2H, overlap, H-6a, 6′a);13C-NMR (100 MHz, CD3OD)δ: 102.8 (C-2), 99.0 (C-1′), 82.5 (C-5), 77.1 (C-4), 76.2 (C-3), 71.3 (C-2′), 70.8 (C-5′), 69.0 (C-3′), 65.5 (C-4′), 64.2 (C-1, 6′), 63.8 (C-6)。以上数据与文献(Ye et al., 2020)报道基本一致,故鉴定为1-O-β-D-吡喃果糖-α-D-吡喃阿洛糖苷。
化合物11白色粉末。HR-ESI-MSm/z: 163.039 1 [M-H]-(C9H7O3,理论值:163.040 1),分子式为C9H8O3。1H-NMR (600 MHz, DMSO-d6)δ: 7.49 (2H, d,J=8.4 Hz, H-3, 5), 7.47 (1H, d,J=16.2 Hz, H-7), 6.79 (2H, d,J=8.4 Hz, H-2, 6), 6.29 (1H, d,J=16.2 Hz, H-8);13C-NMR (150 MHz, DMSO-d6)δ: 168.4 (C-9), 159.6 (C-4), 143.7 (C-7), 132.0 (C-6), 130.0 (C-2), 125.4 (C-1), 115.8 (C-3, 5), 114.9 (C-8)。以上数据与文献(屈珅玥等,2020)报道基本一致,故鉴定为对香豆酸。
化合物12白色粉末。HR-ESI-MSm/z: 367.135 7 [M+Na]+(C16H24O8Na,理论值:367.136 3),分子式为C16H24O8。1H-NMR (400 MHz, CD3OD)δ: 6.15 (1H, d,J=2.4 Hz, H-5), 6.13 (1H, d,J=2.4 Hz, H-3), 4.43 (1H, d,J=7.8 Hz, H-1′), 3.83 (1H, dd,J=12.0, 2.4 Hz, H-6′a), 3.78 (1H, dd,J=12.0, 4.2 Hz, H-6′b), 3.49 (2H, overlap, H-7, 4′), 3.47 (1H, overlap, H-2′), 3.42 (1H, d,J=9.0 Hz, H-3′), 3.24 (1H, m, H-5′), 1.58 (1H, m, H-8a), 1.50 (1H, m, H-8b), 1.08 (3H, d,J=7.2 Hz, H-10), 0.87 (3H, t,J=7.2 Hz, H-9);13C-NMR (100 MHz, CD3OD)δ: 156.1 (C-4), 151.5 (C-6), 143.9 (C-2), 138.2 (C-1), 108.2 (C-1′), 104.7 (C-3), 102.1 (C-5), 78.4 (C-5′), 78.2 (C-3′), 75.6 (C-2′), 71.0 (C-4′), 62.2 (C-6′), 33.7 (C-7), 31.5 (C-8), 22.2 (C-10), 12.6 (C-9)。以上数据与文献(Wubshet et al., 2015)报道基本一致,故鉴定为cesternosides A。
化合物13白色粉末。HR-ESI-MSm/z: 355.099 0 [M+Na]+(C14H20O9Na,理论值:355.099 9),分子式为C14H20O9。1H-NMR (400 MHz, DMSO-d6)δ: 7.72 (1H, s, 4-OH), 6.38 (2H, s, H-2, 6), 4.67 (1H, d,J=7.2 Hz, H-1′), 3.71 (6H, s, 2×-OCH3);13C-NMR (100 MHz, DMSO-d6)δ: 150.2 (C-4), 148.1 (C-2, 6), 130.5 (C-1), 101.6 (C-1′), 95.3 (C-3, 5), 77.0 (C-5′), 76.7 (C-3′), 73.2 (C-2′), 70.1 (C-4′), 60.8 (C-6′), 55.8 (2×-OCH3)。以上数据与文献(Wu et al., 2013)报道基本一致,故鉴定为koaburaside。
化合物14黄色粉末。HR-ESI-MSm/z: 471.089 0 [M+Na]+(C21H20O11Na,理论值:471.089 8),分子式为C21H20O11。1H-NMR (600 MHz, DMSO-d6)δ: 13.18 (1H, s, 5-OH), 7.53 (1H, d,J=8.4 Hz, H-6′), 7.47 (1H, s, H-2′), 6.85 (1H, d,J=8.4 Hz, H-5′), 6.63 (1H, s, H-3), 6.25 (1H, s, H-6), 4.68 (1H, d,J=10.2 Hz, H-1″);13C-NMR (150 MHz, DMSO-d6)δ: 182.0 (C-4), 164.0 (C-2), 162.2 (C-7), 160.4 (C-5), 156.0 (C-9), 149.9 (C-4′), 145.9 (C-3′), 121.8 (C-1′), 119.4 (C-6′), 115.7 (C-5′), 114.0 (C-2′), 104.6 (C-8, 10), 102.4 (C-3), 98.2 (C-6), 82.0 (C-5″), 78.8 (C-3″), 73.4 (C-1″), 70.8 (C-2″), 70.7 (C-4″), 61.7 (C-6″)。以上数据与文献(吴洪新等,2009)报道基本一致,故鉴定为荭草素。
化合物15黄色粉末。HR-ESI-MSm/z: 471.089 4 [M+Na]+(C21H20O11Na,理论值:471.089 8),分子式为C21H20O11。1H-NMR (600 MHz, DMSO-d6)δ: 13.57 (1H, s, 5-OH), 7.42 (1H, dd,J=8.4, 2.4 Hz, H-6′), 7.40 (1H, d,J=2.4 Hz, H-2′), 6.89 (1H, d,J=8.4 Hz, H-5′), 6.68 (1H, s, H-3), 6.48 (1H, s, H-8), 4.58 (1H, d,J=9.6 Hz, H-1″);13C-NMR (150 MHz, DMSO-d6)δ: 181.9 (C-4), 163.7 (C-2), 163.3 (C-7), 160.7 (C-5), 156.2 (C-9), 149.7 (C-4′), 145.8 (C-3′), 121.4 (C-1′), 119.0 (C-6′), 116.1 (C-5′), 113.3 (C-2′), 108.9 (C-6), 103.4 (C-10), 102.8 (C-3), 93.5 (C-8), 81.6 (C-5″), 79.0 (C-3″), 73.0 (C-1″), 70.6 (C-2″), 70.2 (C-4″), 61.5 (C-6″)。以上数据与文献(吴洪新等,2009)报道基本一致,故鉴定为异荭草素。
CCK-8细胞毒性测试结果显示,化合物1-4、6-15在25 μmol·L-1时,以及化合物5在12.5 μmol·L-1时无明显毒性,故选择相应浓度下进行NO抑制活性实验。由表2可知,化合物1-3(脂肪酸及其衍生物)、化合物8(二萜类)、化合物11-15(酚类)显示出一定的NO释放抑制活性,表明这些成分具有一定的抗炎活性,可能是蛇含委陵菜抗炎活性物质。
蛇含委陵菜是贵州苗族、侗族等少数民族习用药材,主要用于风湿性关节炎、乳腺炎、肺炎等疾病的治疗。目前,蛇含委陵菜的化学成分及其抗炎活性研究较少。本研究从蛇含委陵菜60%乙醇提取物中分离得到15个化合物,均为首次从委陵菜属植物中分离得到,包括脂肪酸衍生物(1-3)、二苯醚类化合物(4)、蒽醌类化合物(5、6)、萜类化合物(7、8)、苯丙素类化合物(11)、酚苷类化合物(12、13)、黄酮苷类化合物(14、15)及其他(9、10)。
表 2 化合物1-15的NO释放抑制率(平均值±标准差, n=3)Table 2 NO production inhibition rates of
脂多糖可诱导巨噬细胞NF-κB信号通路的激活,从而促进炎症因子的释放和NO的合成,而NO又与AMPK/ NF-κB、TLR/ NF-κB等通路的调节密切相关(安莉和孙丕忠,2020)。因此,本研究采用LPS诱导的小鼠巨噬细胞(RAW 264.7)体外炎症模型,通过测定NO释放抑制率来评价化合物的抗炎活性。抗炎结果表明,化合物1-3(脂肪酸及其衍生物)、化合物8(二萜类)、化合物11-15(酚性成分)具有一定的抗炎活性,其中新穿心莲内酯(8)在 25 μmol·L-1浓度下抑制率为72.5%。据文献报道,十八碳烷酸及其衍生物大多具有较好的抗炎活性(张俊卿等,2021),化合物1-3可能通过参与NF-κB激活的调节、影响膜磷脂组成和脂质微结构域功能的改变来产生抗炎作用,因此反相调节NO释放(Allijn et al., 2019)。新穿心莲内酯(8)对NO释放具有显著的抑制作用, 其可能通过清除NO自由基,阻断信号传递而产生抗炎作用(刘峻和王峥涛,2005),因此提示该化合物具有抗炎及免疫调节作用且有作为抗炎先导化合物进行结构修饰的潜在价值。荭草素(14)和异荭草素(15)能够有效减少 LPS 诱导的炎性因子释放(NO、TNF-α 以及 IL-1β),抑制MAPK 家族激酶及 NF-κB等上游信号通路相关蛋白活化,降低促炎因子的表达,从而抑制炎症反应(罗成等,2016;万思琦等,2018)。由此可见,各类物质的抗炎作用机制不尽相同,可能通过多成分协同发挥抗炎作用。
本研究进一步丰富了蛇含委陵菜的植物化学信息及化合物结构类型,明确了脂肪酸衍生物、二萜及酚性成分是其潜在的抗炎物质,为深入探索蛇含委陵菜的化学成分及抗炎机制奠定了基础,也为该药用植物的进一步开发利用提供科学依据。