王梦龙, 骆素微, 李晓诗, 彭小群
( 惠州学院 生命科学学院, 广东 惠州 516007 )
自然界植物会受到因各种环境因素影响而引起的胁迫,为了应对多种多样的生物或非生物胁迫,植物在进化的过程中演变出许多有效机制来抵御外界环境胁迫。这些机制既可避免植物遭受胁迫损害,又可提高植物的品质和产量。在植物的非生物胁迫应答中,一类重要的蛋白——凝集素类受体激酶(lectin receptor-like kinases, LecRLKs),在其中发挥着关键作用。LecRLKs是类受体激酶(receptor-like kinases, RLKs)的一个亚家族,广泛存在于植物中,王梦龙等(2020)报道其参与生物/非生物胁迫响应和植物的发育调控。已有的研究表明LecRLKs可通过感知和转导环境中的各种信号分子参与非生物胁迫响应,包括盐胁迫、低温胁迫、干旱胁迫、机械损伤和植物激素等(Vaid et al., 2012; 王梦龙等,2020)。例如,凝集素类受体激酶基因PbLRK138参与了植物的耐盐性(Ma et al., 2018);LecRK-IX.2基因参与了植物的激素信号响应(Luo et al., 2017)。由此可见,凝集素类受体激酶介导的非生物胁迫响应对维持植物的正常生长发育极其重要。
近年来,随着研究的持续深入,参与植物非生物胁迫响应的凝集素类受体激酶被大量报道,但迄今为止尚未有文献对这些研究进行系统的归类和总结。本文概述了植物凝集素类受体激酶的结构特征、分类以及参与各项非生物胁迫响应的信号转导机制和调控机制,并分析了未来的研究方向和应用前景。
凝集素类受体激酶主要由细胞外凝集素结构域、跨膜结构域以及细胞内激酶结构域组成。其中,凝集素结构域具有特异性结合糖类分子的功能,由于该结构域多变且能识别多种不同的信号分子,因此LecRLKs被划分为L、G和C三种类型(Vaid et al., 2012; 王梦龙等,2020)。其中,L型和G型只存在于植物中,C型主要发现于哺乳动物中(Vaid et al., 2013; 王梦龙等,2020)。L型LecRLKs中含有豆科类胞外凝集素结构域,广泛存在于豆科植物中,可以识别细胞外信号并在植物内引起一系列信号响应(Vaid et al., 2012, 2013)。G型LecRLKs属于SRK(S-locus receptor kinase)中的一类,参与了花的发育过程,与自交不亲和性(self-incompatibility, SI)相关(王梦龙等,2020)。G型LecRLKs曾被称为B型LecRLKs,其凝集素结构域包括了12条β-barrel结构,并与α-D甘露糖具有潜在的亲和力,但目前其内在功能机制尚不清楚(Vaid et al., 2013)。C型LecRLKs是一类广泛存在于哺乳动物体内,能识别自我和非自我以及依赖于Ca2+行使功能的凝集素类受体蛋白激酶(王梦龙等,2020)。C型LecRLKs在植物中较少发现,目前在水稻(Oryzasativa)、拟南芥(Arabidopsisthaliana)、毛果杨(Populustrichocarpa)及桉树(Eucalyptusrobusta)中都只发现1个该类型LecRLKs,其具体功能尚不了解(Bouwmeester &Govers, 2009; Vaid et al., 2012; 彭小群等,2022)。
LecRLKs的跨膜区由18~25个氨基酸组成,大多数氨基酸属于非极性氨基酸,其序列一致性较差(Morillo &Tax, 2006)。Pi-d2蛋白属于G型LecRLKs,其跨膜结构域中一个氨基酸的改变会引起蛋白质丧失功能,表明跨膜结构域对LecRLKs功能的维持十分重要(Chen et al., 2006)。已有研究发现跨膜结构域不仅参与信号转导及质膜定位过程,还具有识别配体的功能(Bi et al., 2016; Hohmann et al., 2017)。
激酶结构域一般由250~300个氨基酸组成,与凝集素结构域相比具有更高的保守性,其结构域上具有磷酸化位点,主要参与外界信号传递(Vaid et al., 2012)。酶动力学研究发现某些二价金属阳离子可促进激酶结构域自身磷酸化以及激酶活性,其中Mn2+与Mg2+离子的促进效果较Ca2+与Zn2+离子好(Nishiguchi et al., 2002; He et al., 2004)。
在非生物胁迫中,高盐胁迫条件不利于植物的生长发育,这是导致作物产量减少的主要原因之一,并且每年会造成严重的经济损失。植物在高盐环境下通过自身基因调控以适应胁迫环境。拟南芥、大豆(Glycinesoja)、水稻和豌豆(Pisumsativum)等植物中的各种类型凝集素类受体激酶均参与了盐胁迫的应答反应,表1中已列出参与盐胁迫响应相关的凝集素类受体激酶基因。
LecRK-I.3是拟南芥L型凝集素类受体激酶基因。已有研究发现,拟南芥LecRK-I.3基因受盐胁迫诱导表达,将烟草中盐诱导的乙烯受体基因NTHK1转入拟南芥中过度表达会降低乙烯敏感性(Zhang et al., 2001; Xie et al., 2002)。Deng等(2009)证实了拟南芥LecRK-V.2基因主要在种子萌发时表达,萌发后则停止表达,并参与了种子早期发育过程的盐胁迫应答。更重要的是,由于LecRK-V.2基因被证实在种子萌发过程中作为ABA响应的正调控因子,因此LecRK-V.2基因功能缺陷突变体能够有效减少拟南芥生长发育早期对ABA和盐的敏感性。拟南芥L型凝集素类受体激酶基因LecRK-IV.3的转录受盐和ABA双重调控,高盐条件下起着正向调节的作用,在种子萌发阶段负向调控ABA反应(Xin et al., 2009)。在高盐环境下过表达LecRK-IV.3基因使植株对盐胁迫耐性增强,从而提高种子的萌发率和绿叶率(Huang et al., 2013)。李美玲(2019)的研究发现,LecRKIII.2基因使拟南芥幼苗在萌发期间对盐胁迫表现出更高的耐受性。
GsSRK是大豆中的G型凝集素类受体激酶基因,受盐胁迫、干旱胁迫和ABA的多重诱导,并通过独立于ABA的反应途径来调控植物对盐和干旱胁迫的耐受性。Sun等(2013)研究发现过表达该基因可提高植物的耐盐性,使植物在成熟阶段表现为叶绿素含量增加、离子泄露降低、株高增长和果实增多等形态特征。在拟南芥中过表达GsSRK基因不仅正向调节植物对盐胁迫的耐受性,而且提高了在盐胁迫环境下的产量(Sun et al., 2013)。Sun等(2018)研究发现,在苜蓿(Medicagosativa)中过表达大豆全长GsSRK(GsSRK-f)或缺失G型凝集素结构域的截短型GsSRK(GsSRK-t)基因均可提高植株的耐盐性,并且过表达GsSRK-t的转基因株系的生长性能优于过表达GsSRK-f。Zhang等(2022)通过转录研究鉴定到GmLecRLK为大豆盐胁迫相关基因,主要在根系中表达,参与调控大豆的耐盐能力。GmLecRLK过表达转基因大豆表现出对盐胁迫耐受,并且增强了大豆清除活性氧(ROS)的能力(Zhang et al., 2022)。虽然有研究结果表明GmLecRLK能够提高大豆对盐的耐受性,但其实际调控机制尚未研究清楚。
豌豆L型PsLecRLK基因主要在根和嫩枝中积累,盐胁迫条件下其表达会显著上调。Joshi等(2010)通过实验发现PsLecRLK基因在低温和干旱胁迫下也会增加表达,并且在盐胁迫下表达增长幅度最大。PsLecRLK基因在烟草植株中过度表达可以减少转基因植株的离子平衡和渗透压,从而获得耐盐性。Vaid等(2015)通过实验发现过表达PsLecRLK基因的植株在盐胁迫下能够表现出更高的萌发率和绿叶率,既可防止根系组织中ROS积累和膜损伤,又能有效降低Na+/K+比例从而增强了植株对盐的耐受性。
Li等(2014)证明水稻L型凝集素类受体激酶SIT1在盐条件下可快速被激活,进而磷酸化下游效应子MPK3和MPK6。SIT1负调控水稻的耐盐性,随着SIT1激酶的表达增加,植物存活率反而降低。拟南芥中SIT1蛋白激酶在盐胁迫下使ROS积累增加,从而抑制植株的生长发育且降低植株在盐胁迫下的存活率(Li et al., 2014)。Ma等(2018)研究发现白梨(Pyrusbretschneideri)中有6个LecRLKs (4个L型和2个G型)在盐胁迫条件下显著表达,提示它们可能在调节非生物胁迫方面发挥一定作用。在烟草中过表达白梨L型凝集素类受体激酶基因PbLEK138可导致细胞死亡,从而提高植物对盐的耐受性(Ma et al., 2018)。樱桃(Cerasushumilis)具有较强的耐盐能力,Han等(2021)研究发现存在8个ChLecRLK基因(5个G型、2个L型和1个C型)在重度盐胁迫下表达量显著提高,轻度盐胁迫下有5个ChLecRLK基因(4个G型和1个L型)显著表达,表明它们积极参与盐胁迫的响应。花生(Arachishypogaea)是我国主要的油料作物之一,通过同源克隆可在栽培种花生中获得一个L型凝集素类受体激酶基因AhLecRK9。黄若兰(2022)研究发现,在拟南芥中过表达花生L型凝集素类受体激酶AhLecRK9,植株对盐胁迫表现出更强的敏感性。
表 1 参与盐胁迫响应相关凝集素类受体激酶基因列表Table 1 LecRLK genes involved in salt stress response
同其他环境胁迫一样,低温是限制植物生长的关键性条件之一,其受地理位置影响较大。低温会导致作物产量降低、生长发育不良甚至造成生殖发育阻碍。植物细胞通过不断进化出现复杂的细胞内信号网络,当遇到冷信号胁迫时可以直接或间接地增强对冷的耐受性。表2中已列出参与低温胁迫响应相关的凝集素类受体激酶基因。
拟南芥L型凝集素类受体激酶LecRK-V.6在遇到低温时其表达被强烈抑制(Bouwmeester &Govers, 2009)。陆秀涛等(2016)通过实验发现,虽然拟南芥LecRK-S.7基因在植株各个时期的表达量并不高,但其启动子区含低温胁迫应答元件,表明LecRK-S.7基因可能参与低温胁迫响应。李美玲(2019)通过对拟南芥幼苗进行低温胁迫处理发现,LecRKIII.2基因在植株中的表达量出现先上升后下降的变化趋势,表明LecRKIII.2基因可能参与了冷胁迫的响应。
豌豆PsLecRLK基因虽然在低温条件下的表达量会增加,但与盐胁迫相比其增长幅度较小(Joshi et al., 2010)。水稻三叶期嫩苗经低温处理后,植株中的L型凝集素类受体激酶基因OsLecRK1的表达受到抑制(崔欣欣,2012)。Liu等(2017)在一种南极苔藓黄丝瓜藓(Pohlianutans)中鉴定出一个L型的凝集素类受体激酶基因PnLecRLK1。Liu等(2017)研究发现,当PnLecRLK1基因在拟南芥转基因植株中过量表达时,植株可对低温胁迫表现出更强的耐受性。
如表3所示,凝集素类受体激酶参与植物的干旱胁迫响应。樱桃是一种广泛种植于我国北方且具有较强耐旱和耐盐能力的重要水土保持果树(Han et al., 2021)。Han等(2021)对樱桃研究发现,樱桃中的LecRLKs不仅参与了盐胁迫的响应,还在应答干旱胁迫上至关重要。从对其170个LecRLK家族基因中选取的9个候选凝集素类受体激酶ChLecRLK基因(5个G型ChLecRLKs基因:ChLecRLK-G22、ChLecRLK-G36、ChLecRLK-G68、ChLecRLK-G82和ChLecRLK-G107;3个L型ChLecRLKs基因:ChLecRLK-L17、ChLecRLK-L32和ChLecRLK-L42;1个C型ChLecRLKs基因:ChLecRLK-C01)的研究表明,这9个基因积极参与了干旱胁迫响应。在强干旱胁迫下,植株的叶片中有8个基因的表达量显著提高;在弱干旱下,ChLecRLK-G36、ChLecRLK-G68及ChLecRLK-L32在叶片中的表达量降低(Han et al., 2021)。
表 2 参与低温胁迫响应相关凝集素类受体激酶基因列表Table 2 LecRLK genes involved in cold stress response
已有研究发现,干旱胁迫能够诱导大豆GsSRK基因的表达,并且GsSRK基因调控植株的耐旱性过程独立于ABA信号途径(Ge et al., 2010; Sun et al., 2013)。Haider等(2021)研究表明在黄瓜中,多个凝集素类受体激酶基因可能参与了干旱胁迫响应。黄若兰(2022)将花生中获取的L型凝集素类受体激酶基因AhLecRK9转化到拟南芥植株中,得到转基因过表达植株(OE)。干旱胁迫可抑制OE植株地上部的生长,而地下部与野生型相比相对伸长,表明AhLecRK9的过表达增强了拟南芥植株对干旱的耐受性。
当植物受到机械损伤时,会引发细胞膜去极化、激活钙离子通道与植物激素调控等一系列相关反应。LecRLKs在机械损伤胁迫应答中发挥重要的调控作用,其能够通过感知植物遭受的机械损伤参与非生物胁迫响应。表4中已列出参与机械损伤胁迫响应相关的凝集素类受体激酶基因。
LecRK-V.5是拟南芥L型凝集素类受体激酶基因,是一类由45个成员组成的多基因家族的成员之一(Hervé et al., 1996; Barre et al., 2002; Bouwmeester &Govers, 2009)。Hervé等(1996)最早发现LecRK-V.5具有参与低聚糖与植物激素信号转导的生理功能。随后的研究发现LecRK-V.5基因在植物的生物或非生物胁迫(如盐胁迫、低温胁迫、干旱、机械损伤等)响应和植物的生长发育过程中也起重要作用。Riou等(2002)对LecRK-V.5基因的启动子与GUS基因融合表达的研究发现,在发生机械损伤胁迫后LecRK-V.5基因表达的诱导主要与局部反应相关。机械损伤通常会引起包括诱导损伤周围部位细胞分裂在内的植物组织修复及愈合等系列局部反应。从损伤的拟南芥植株组织中发现,LecRK-V.5基因的表达在受到损伤后被局部激活,表达量明显提高(Riou et al., 2002)。已有研究发现,拟南芥受到损伤后其细胞壁的果胶将会释放一种低聚半乳糖醛酸,以非茉莉酸(JA)的途径诱导损伤胁迫响应基因的表达,表明该类分子可能参与了初期的损伤信号转导(Benhamou et al., 1990; Riou et al., 2002)。拟南芥L型凝集素类受体激酶P2K1参与植物的伤口反应。P2K1是第一个在植物中鉴定的细胞外三磷酸腺苷(eATP)受体,通过比对蛋白序列发现P2K1蛋白是LecRK-I.9(L-type lectin receptor kinase I.9),其在正常条件下高表达(Choi et al., 2014)。当植株受到一定的损伤时会引发细胞破碎而释放ATP,而这些释放到细胞外的ATP能作为信号分子参与生物体的生长发育和应激响应(Tanaka et al., 2014)。随着P2K1受体识别损伤胁迫响应中的DAMP信号——ATP功能发现,大多数与ATP响应相关的基因被证明参与了损伤应答(Tanaka et al., 2014)。Tanaka等(2014)进一步研究发现P2K1基因突变体对ATP变化与损伤具有相同的应答效果,并且过表达的P2K1能增强对ATP与损伤的响应。这表明P2K1参与了植物的损伤胁迫应答,与ATP作为DAMP信号分子的功能相同。
表 3 参与干旱胁迫响应相关凝集素类受体激酶基因列表Table 3 LecRLK genes involved in drought stress response
与拟南芥中LecRK-V.5基因相反,黑杨(Populusnigra)中PnLPK基因在幼叶受到机械损伤胁迫时表达量会增加(Nishiguchi et al., 2002)。茉莉酸(JA)是介导机械损伤诱导基因表达的重要组分(Pea-Cortés et al., 1995)。然而,Nishiguchi等(2002)的研究发现,当杨树幼叶受到机械损伤时,PnLPK基因表达的调控可能不依赖于JA和SA介导的信号转导通道。
在烟草(Nicotianabenthamiana)中,LecRK1参与了机械损伤的胁迫响应。在受到机械损伤的烟草叶片中,LecRK1基因的mRNA丰度增加(Gilardoni et al., 2011)。水稻中的L型凝集素类受体激酶基因OsLecRK1经机械损伤胁迫后,其表达量受到诱导上调(崔欣欣,2012)。Vaid等(2015)研究发现豌豆中L型凝集素类受体激酶PsLecRLK基因参与机械损伤响应。在辣椒(Capsicumannuum)中,CaLecRK-S.5具有广谱抗性,不仅参与植株的抗病反应,而且在机械损伤胁迫响应方面具有重要作用(Woo et al., 2016)。损伤胁迫能够诱导CaLecRK-S.5基因的表达。CaLecRK-S.5是一种辣椒L型凝集素类受体激酶基因,在无外在刺激时,过表达的CaLecRK-S.5基因无法诱导丝裂原活化蛋白激酶(MAPK)级联反应、ROS的爆发及其他反应症状(Woo et al., 2016, 2020)。Woo等(2016)通过对CaLecRK-S.5基因沉默与过表达的研究发现,在CaLecRK-S.5基因沉默植株中,与损伤胁迫应答相关的基因表达量将降低,而在过表达CaLecRK-S.5基因植株中,损伤胁迫能诱导植株表现出更强的MAPK级联反应以及ROS的爆发。这表明辣椒CaLecRK-S.5基因能够对损伤胁迫做出响应。
植物激素在植物的生长发育调控中具有重要的生理功能。植物激素的调控需要膜蛋白的参与,大量的研究结果表明凝集素类受体激酶LecRLKs参与植物激素信号响应。
2.5.1 LecRLKs参与脱落酸(ABA)信号应答 如表5所示,凝集素类受体激酶参与ABA信号响应。Xin等(2009)对拟南芥中的凝集素类受体激酶的研究表明,多个LecRLKs受到ABA的转录调控(Xin et al., 2009; Bouwmeester &Govers, 2009)。Xin等(2009)研究发现,在拟南芥L型凝集素类受体激酶中存在一类为LecRKsA4的亚家族,共包括4个成员,即LecRKA4.1、LecRKA4.2、LecRKA4.3以及LecRKA4.4,它们在种子的萌发过程中负向调控ABA胁迫,从而抑制种子萌发。Xin等(2009)对LecRKA4.1突变体的进一步研究发现,LecRKA4.1的T-DNA敲除突变体在种子萌发的抑制作用中对ABA胁迫做出弱增强的响应。随后,对LecRKA4.2、LecRKA4.3以及LecRKA4.4的功能缺失突变体的研究也发现相同的弱增强应答。基于LecRKsA4基因的表达研究以及转录网格调控分析,LecRKA4.1与LecRKA4.2被证实参与调控部分ABA应答基因的表达。基于对该家族成员基因在种子萌发中对ABA胁迫响应的负调控存在冗余功能的猜测,Xin等(2009)研究发现LecRKsA4成员基因双突变或三重突变时ABA对种子萌发的抑制作用更强烈。Zhang等(2019)研究发现,LecRKA4.4参与调控ABA介导的气孔开闭过程。拟南芥中LecRK-V.2在种子萌发阶段参与了ABA胁迫响应。LecRK-V.2在种子萌发阶段受ABA正向调节。与LecRKsA4家族的突变系不同的是,LecRK-V.2的功能性缺失突变体能轻微减小ABA对种子萌发的抑制作用(Deng et al., 2009)。当LecRK-V.5基因过表达时,其可以通过抑制ABA胁迫的应答反应来调控气孔的开闭(Desclos-Theveniau et al., 2012)。豌豆L型凝集素类受体激酶PsLecRLK基因参与ABA的信号应答。豌豆经ABA处理后,PsLecRLK基因在后期会产生强烈的应答(Vaid et al., 2015)。Liu等(2017)将黄丝瓜藓中的L型凝集素类受体激酶基因PnLecRLK1转入拟南芥中过表达发现,可以提高拟南芥种子萌发时对ABA的敏感性。此外,在PnLecRLK1过表达的拟南芥转基因植株中,ABA响应基因转录物丰度显著提高。
表 4 参与机械损伤胁迫响应相关凝集素类受体激酶基因列表Table 4 LecRLK genes involved in mechanical damage stress response
表 5 参与ABA信号响应相关凝集素类受体激酶基因列表Table 5 LecRLK genes involved in ABA stress response
2.5.2 LecRLKs参与水杨酸(SA)信号应答 如表6所示,凝集素类受体激酶参与SA信号响应。Luo等(2017)研究发现,拟南芥中的L型凝集素类受体激酶基因LecRK-IX.2参与植物激素SA的信号应答。LecRK-IX.2基因能够诱导钙依赖蛋白激酶(CPKs)磷酸化且激活RBohD,从而引起ROS的爆发,并增强ROS触发的SA生物合成。LecRK-IX.2介导的细胞死亡需要SA的积累,当LecRK-IX.2过表达引起SA升高时可导致细胞死亡。此外,LecRK-IX.2突变体还参与响应flg22诱导的拟南芥SA信号转导途径。Melotto等(2006)研究表明,功能性SA信号参与气孔免疫过程中的气孔关闭。Yekondi(2018)等的研究提示,拟南芥LecRK-V.2和LecRK-VII.1可能在SA介导的气孔关闭中发挥部分作用。
在烟草中,LecRK1会抑制SA在食草性过程的积累。通过病毒介导的基因沉默和反向重复RNA干扰,可以降低植株中LecRK1的表达量,从而得到ir-LecRK1植株。Gilardoni等(2011)研究发现,在ir-LecRK1植株中,SA的积累量会增长两倍。
2.5.3 LecRLKs参与茉莉酸(JA)信号应答 如表7所示,凝集素类受体激酶参与JA信号响应。在拟南芥中,Balagué等(2017)研究发现,L型凝集素类受体激酶LecRK-I.9参与JA信号响应。JA能够诱导LecRK-I.9基因的表达,而过表达LecRK-I.9基因可以改变其JA信号响应相关转录因子(TFs)的表达水平。此外,过表达LecRK-I.9基因对合成JA及该信号通路中相关基因的表达也有一定的影响。Balagué等(2017)研究发现,LecRK-I.9参与响应JA激素信号,能够负调控信号通路的MYC分支。乙烯(ET)与JA共同参与调控LecRK-I.9的表达,而SA不参与该过程(Gimenez-Ibanez &Solano, 2013)。Balagué等(2017)通过研究提出LecRK-I.9响应JA信号通路的调控模型,即LecRK-I.9对JA介导的防御基因具有正调控作用,而对JA介导的损伤基因具有负调节作用。Yekondi等(2018)研究发现,L型凝集素类受体激酶LecRK-V.2和LecRK-VII.1参与了气孔的免疫过程以及JA诱导的气孔关闭过程,即当LecRK-V.2基因和LecRK-VII.1基因过表达时,植株对MeJA介导的气孔关闭过程表现出更高的敏感性。LecRK-V.2和LecRK-VII.1通过参与激活MeJA诱导的保卫细胞Ca2+渗透阳离子通道的过程致使气孔关闭(Yekondi et al., 2018)。因此,LecRK-V.2基因和LecRK-VII.1基因可能对flg22感知和MeJA积累的信号级联过程具有重要作用,从而引起ROS爆发。由此可见,功能性的LecRK-V.2和LecRK-VII.1是MeJA介导的气孔关闭的重要组分。
Gilardoni等(2011)证实LecRK1参与烟草中昆虫介导的对JA诱导的防御抑制过程。Gilardoni等(2011)研究发现,在JA合成不足或对其敏感度低的植株中,茉莉酸盐能够抑制LecRK1基因mRNA的表达。
2.5.4 LecRLKs参与乙烯(ET)信号应答 如表8所示,凝集素类受体激酶参与ET信号响应。Mergemann和Sauter(2000)的研究发现,乙烯(ET)通过调节ROS的产生来介导植物的胁迫反应。He等(2004)研究发现,拟南芥L型凝集素类受体激酶LecRK-I.3基因在盐胁迫下的诱导表达受ET信号通路及乙烯受体蛋白的调控。NTHK1是在烟草中发现的一个受盐胁迫诱导的乙烯受体基因(Zhang et al., 2001)。He等(2004)研究表明,在转入了NTHK1基因的拟南芥中LecRK-I.3基因的表达被抑制或延缓。在乙烯过量表达突变体eto1-1中,LecRK-I.3基因受乙烯诱导呈组成性表达(He et al., 2004)。在乙烯不敏感突变体ein2-1中,LecRK-I.3受盐诱导的表达量与野生型的基本相同,Alonso等(1999)研究表明LecRK-I.3在盐胁迫下的诱导表达不依赖于乙烯信号通路的核心组分EIN2。
Li等(2014)研究发现,水稻L型凝集素类受体激酶SIT1正向调控ET的产生,并介导盐诱导的乙烯信号转导。在拟南芥中,SIT1通过MPK3/6和乙烯信号依赖的方式促进活性氧ROS的积累,从而抑制植物的生长甚至导致死亡。Li等(2014)研究证实了水稻中存在一个SIT1-MPK3/6级联反应,可以通过调节ROS和乙烯的稳态及信号转导介导盐的敏感性。
PsLecRLK是豌豆L型凝集素类受体激酶。PsLecRLK在烟草植株中过度表达时,乙烯响应基因表达上调(Vaid et al., 2015)。
表 8 参与ET信号响应相关凝集素类受体激酶基因列表Table 8 LecRLK genes involved in ET stress response
非生物胁迫(盐害、温度胁迫、干旱、机械损伤、激素胁迫等)既是限制大多数作物产量的关键因素之一,也是威胁粮食安全的主要环境因子。目前,尽管已有许多凝集素类受体激酶参与植物非生物胁迫响应,涉及多种信号分子和信号通路,但其潜在的作用机制仍有待进一步探索。第一,LecRLKs参与非生物胁迫识别配体的机制和信号转导机制尚不清楚。已知凝集素类受体激酶是识别自我与非自我的信号分子,并且通过信号转导参与植物的生物/非生物胁迫响应。例如,PnLPK可以通过非JA和SA介导的信号转导通道参与机械损伤响应(Nishiguchi et al., 2002)。然而,对于LecRLKs如何通过其细胞内激酶结构域将信号传递给下游的信号分子,如何调控应激反应,如何与其他信号通路相互作用以及如何调节基因表达和蛋白质翻译等还缺乏系统研究。尽管已知凝集素类受体激酶具有激酶结构域,磷酸化功能在信号激活和转导中具有极其重要作用,但磷酸化功能是否参与调控植物的非生物胁迫响应还鲜有报道。通过对凝集素类受体激酶的激酶活性及其磷酸化功能进行深入研究,将进一步拓展该类激酶参与非生物胁迫响应的研究思路。第二,LecRLKs功能多样性和功能冗余性的利用还未深入开发。LecRLKs可以在不同的非生物胁迫下发挥不同作用,甚至在同一种非生物胁迫下也可以有不同的效应。例如,在低温胁迫下,水稻嫩苗中的OsLecRK1基因表达受到抑制,而在机械损伤的胁迫下,水稻中OsLecRK1基因的表达量诱导上调。这表明同一LecRLKs的功能具有多样性,而功能的多样性可能与其结构域、亚细胞定位、组织特异性表达等因素有关。同时,LecRLKs间可能存在功能的冗余或协同应答作用,将导致单基因敲除或过表达不明显或不统一。因此,需要从遗传学、分子生物学等角度深入系统地进行功能分析与研究。此外,目前凝集素类受体激酶的功能研究大都集中在单一某个凝集素类受体激酶,而不同凝集素类受体激酶间是否存在相互作用,是否协同参与非生物胁迫响应知之甚少。探究凝集素类受体激酶之间的相互调控关系,阐明它们参与非生物胁迫的响应机制,是未来值得研究的方向之一。
LecRLKs在作物抗逆育种中的应用尚未普及。通过转基因或基因编辑技术改变LecRLKs的表达水平或活性,可以提高作物对非生物胁迫的抗性。例如,在拟南芥中过表达LecRK-IV.3基因可使植株对盐胁迫耐性增强(Huang et al., 2013)。这些研究为利用LecRLKs进行作物抗逆育种提供了有益的借鉴。然而,由于LecRLKs功能的多样性和冗余性,以及转基因或基因编辑技术的局限性,迄今为止还未有将LecRLKs成功应用于作物抗逆育种的案例。因此,需要进一步筛选和鉴定具有重要功能和应用潜力的LecRLKs,以及开发更高效、更安全和更可靠的基因操作技术,是实现LecRLKs在作物抗逆育种中广泛应用的关键。同时,深入了解植物发育与胁迫响应间的相互关系,阐明其中的分子调控机制,寻找发育与抗逆的平衡点,对于作物的抗逆育种也尤为重要。
对LecRLKs的进一步鉴定和深入研究,有助于筛选出满足人类需要的LecRLK候选基因,从而改造更耐胁迫、抗逆性的作物。此外,提高植物的抗逆性能在一定情况下减小由低耐受作物耗费大量水肥引起的环境压力,对农业生产以及环境的可持续发展也至关重要。