周平 岳晶晶 颜少宾 郭瑞 金光
摘要:鎂离子转运蛋白(Magnesium transporter,MGT)是植物体内镁离子吸收运输的重要转运子。为系统研究番木瓜MGT家族(CpMGTs)特征,鉴定了基因家族成员并分析其蛋白特征和基因转录模式。结果表明番木瓜基因组含5个CpMGT家族成员(CpMGTa-CpMGTe),氨基酸数387~491个,分子量43.95~54.84 KD,定位于细胞核、细胞质、叶绿体、过氧化物酶体等亚细胞结构。基于转录组测序,发现CpMGTs的表达具有组织特异性,成熟叶、幼花与根器官中优势表达的CpMGT不同。根、花器官中CpMGTc表达具有性别差异性;CpMGTb和CpMGTd跨季节转录变化在雌雄番木瓜幼花中也存在特定差别。这些发现揭示CpMGTs表达模式及性别差异性表达特征,为研究基因功能奠定基础。
关键词:番木瓜;镁离子转运蛋白;表达;性别
中图分类号:S667.9 文献标识码:A 文章编号:2095-5774(2023)01-0001-06
Identification and Transcriptional Characteristics Analyses of Magnesium
Transporters Gene Family in Carica papaya
Zhou Ping1,Yue Jingjing2,Yan Shaobin1,Guo Rui1,Jin Guang1*
(1Fruit Research Institute,Fujian Academy of Agricultural Sciences / Research Centre for Engineering Technology of Fujian Deciduous Fruits,Fuzhou,Fujian 350013,China;
2Center for Genomics and Biotechnology / Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology / Key Laboratory of Genetics,Breeding and Multiple Utilization of Crops,Ministry of Education,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China)
Abstract:Magnesium Transporter (MGT) was charactered as an important transporter of magnesium absorption and transportation in plant. To investigate characteristics of papaya (Carica papaya) magnesium transporters (CpMGTs),their gene family members were identified,and their protein characteristics and gene transcriptional patterns were analyzed. The results showed that five CpMGT members (CpMGTa-CpMGTe) with 387-491 amino acids and molecular weight of 43.95-54.84 KD,which were predicted to be located in nucleus,cytoplasm,chloroplast,peroxisome and other subcellular strucures,existde in papaya genome. According to the transcriptomic sequencing and analyses,tissue-specific expressional patterns of CpMGTs were observed in different organs,and the predominantly expressed CpMGT members were distinct among mature leaves,young flowers and roots. CpMGTs transcriptional profiles had showed specific sexual differences,i.e. CpMGTc displayed sex-biased gene expression in roots and flowers,while CpMGTb and CpMGTd showed their seasonal change tendencies of gene transcription in distinct manner between male and female papayas. All these findings charactered the expressional patterns and the special sex bias in CpMGTs transcription,laying the foundation for functional study of CpMGTs.
Key words:Papaya;Magnesium transporter;Expression;Sexes
镁是植物必需元素,其以镁离子形式被摄取后利用于植物生长发育及重要生理代谢反应。研究表明镁离子是构成叶绿素的重要组分;也是数百种生理代谢酶的激活剂,参与植物新陈代谢[1]。缺镁严重影响叶绿素合成,干扰光合产物分配与韧皮部运输,抑制植株生长及产量[2,3]。植物中的镁离子转运蛋白(Magnesium Transporter,MGT)被认为是最重要的镁离子转运载体。最早在拟南芥中鉴定报道10个MGT家族成员[4]。此后系统分析水稻、玉米、甘蔗、番茄、油菜、梨等作物发现植物MGTs家族可聚类为五大分支[5-10]。不同家族成员功能偏向各不相同,如控制根系對Mg2+的吸收[11,12]、拮抗抑制金属毒害[13]、参与配子发育[10,14,15]、维持叶肉叶绿体Mg2+平衡及光合反应[16-18]。
番木瓜(Carica papaya L.)原产热带美洲,在我国福建、台湾、广东、云南、海南等地有产业化栽培。番木瓜是有性别的水果作物,其性别类型可分为雌性、雄性和两性。雌株、雄株和两性株分别开雌花、雄花和完全花。不同性别类型植株间常存在形态、生理代谢和遗传学差异[19]。目前发现番木瓜CpMGT1具有Mg2+转运活性[20],但未报道该物种其它MGT成员情况。
为系统研究番木瓜镁离子转运蛋白(CpMGT)基因家族转录表达特征,鉴定全基因组范围内的镁离子转运蛋白,并分别在雌雄番木瓜植株上检测CpMGTs表达,首次发现部分CpMGT成员表达具有性别差异性。这些发现为深入研究番木瓜镁离子转运蛋白功能奠定基础。
1 材料与方法
1.1 CpMGTs鉴定与表征预测
以拟南芥、水稻MGT序列[4,5]为参考,BLASP比对Sunset番木瓜基因组转录本翻译蛋白数据集[21],筛选比对结果E-value值小于E-10且相似度大于70%的编码蛋白为CpMGTs。Protparam[22]计算CpMGTs氨基酸数、相对分子质量以及理论等电点,TMHMM[23]预测CpMGTs跨膜区及跨膜数,YLoc+[24]预测CpMGTs亚细胞定位。
1.2 试验植物材料
以福建农林大学中华园试验设施大棚所种两年生‘中黄番木瓜(Carica papaya var. Zhonghuang)为试验材料。‘中黄番木瓜系实生繁殖,播种的‘中黄种子由福建农林大学基因组与生物技术中心通过多代人工授粉全同胞杂交获得,以保证后代群体中的雄株、雌株个体遗传背景接近一致[19]。
1.3 CpMGTs基因表达特征分析
1.3.1 花、叶、根CpMGTs转录表达特征分析
分析雌雄异株‘中黄番木瓜雄株、雌株幼花(采集未见雌雄蕊原基分化的极早期花,花径小于2 mm)、成熟叶及根组织CpMGTs表达特征。试验测试幼花、叶、根样本各3个生物学重复。取自1株番木瓜植株的样品为1个生物学重复,试验共采集3株雄株和3株雌株样本进行转录组测序。所得测序数据,参照报道方法[25]比对番木瓜Sunset参考基因组[21],‘DEseq2筛选多重校验校正后P < 0.05且表达变化倍数大于2或者小于1/2的基因为两组差异表达基因。
最终本文所用CpMGTs基因表达水平以样本转录组分析所得的FPKM(Fragments Per Kilobase per Million,每百万读段中来自于某基因每千碱基长度的读段数)数值衡量。
1.3.2 春、夏、冬三季CpMGTs转录表达分析
于2019年4月17日、8月13日和2020年1月3日采集相同‘中黄番木瓜试验植株春、夏、冬三季幼花,转录组测序分析CpMGTs基因表达。试验步骤及方法同1.3.1。
2 结果与分析
2.1 CpMGTs鉴定与理化特性预测
同源相似性比对共鉴定获得5个CpMGT,依据其编码基因所处染色体位置依次命名为CpMGTa-CpMGTe(表1)。所得CpMGTs均含2个跨膜结构,蛋白氨基酸数387~491个,分子量43.95~54.84 KD,等电点4.86~6.01,预测蛋白定位于细胞核、细胞质、叶绿体、过氧化物酶体等不同的亚细胞结构。
2.2 CpMGTs转录表达特征分析
转录谱分析番木瓜花、叶、根器官CpMGTs表达(图1),发现地上部分和地下部分CpMGTs表达模式存在特定差异。番木瓜叶、花中CpMGTs表达水平整体高于根器官中基因表达。其中,CpMGTb在叶和花中优势表达,表达水平高于其他家族成员;而CpMGTe在根中表达相对较强。
比较不同性别番木瓜CpMGTs在所检测的器官中的转录表达水平,发现CpMGTc转录具有性别差异性,即雄株番木瓜根器官、花器官中的CpMGTc mRNA转录丰度显著高于雌株;而其他家族成员无此现象。
追踪调查雌雄异株番木瓜CpMGTs春、夏、冬三季转录表达动态(图2),观测到的CpMGTa(先降后升)、CpMGTc(持续下降)、CpMGTe(先升后稳)基因转录变化趋势在雌雄株幼花间无差异。但CpMGTb和CpMGTd转录在不同性别番木瓜幼花中存在特定差别。转录谱分析结果表明:冬季雌花CpMGTb转录上升,雄花CpMGTb转录减弱;冬季雌花CpMGTd表达水平高于春、夏两季,而雄花CpMGTd三季表达水平接近。
3 讨论
MGT是古老的基因,从水生原始藻类至其后的陆生植物一直存在。研究认为由MGT介导的镁吸收和镁利用在植物生长发育和生命活动过程中发挥了重要的作用[26]。基于同源相似性比对方法,本研究在番木瓜基因组中共鉴定出5个高置信度CpMGT。预测这些CpMGTs编码蛋白性质具有差异,且定位于不同的细胞结构组分(细胞核、细胞质、叶绿体、过氧化物酶体),这表明CpMGTs很可能是以协作的方式参与细胞内外镁离子的平衡过程。进一步的转录谱分析结果发现番木瓜地上部分和地下部分CpMGTs表达模式具有明显的差异,CpMGTb和CpMGTe分别是地上部分叶、花和地下根器官中相对优势表达的CpMGT,可能在对应器官的镁离子摄取、运输过程中发挥主要作用。
本研究还发现番木瓜植株中部分CpMGTs表达具有性别差异性。与多种果树不同,番木瓜具有性别,其性别是由性染色体组合遗传决定,XX雌性,XY雄性[21]。试验所用‘中黄番木瓜系多代人工授粉全同胞杂交得到的雌雄异株品种,其雌雄株后代除XY性染色体非重组性别决定区段外,常染色体和假常染色体基因组序列基本一致[19]。本研究使用遗传背景接近的雌雄植株材料检测CpMGTs表达仍能发现性别差异性转录,说明番木瓜性别差异对常染色体上的CpMGT表达能产生特定影响。持续追踪三季CpMGTs转录表达,观测到两个CpMGT在不同季节雌、雄株幼花样本中的转录表达变化趋势不同,亦暗示番木瓜性别分化可能会对CpMGTs运输镁离子能力形成影响,这是否會造成不同性别番木瓜镁积累与镁利用的差异值得后续研究进一步关注。
参考文献:
[1]Chen Z,Peng W,Li J,et al. Functional dissection and transport mechanism of magnesium in plants[J]. Seminars in Cell & Developmental Biology,2018(74):142-152.
[2]Huang J,Xu J,Ye X,et al. Magnesium deficiency affects secondary lignification of the vascular system in Citrus sinensis seedlings[J]. Trees,2019,33(1):171-182.
[3]Zhang B,Cakmak I,Feng J,et al. Magnesium deficiency reduced the yield and seed germination in wax gourd by affecting the carbohydrate translocation[J]. Frontiers in Plant Science,2020(11):797.
[4]Li L,Tutone A,Drummond R,et al. A novel family of magnesium transport genes in Arabidopsis[J]. The Plant Cell,2001,13(12):2761-2775.
[5]Saito T,Kobayashi NI,Tanoi K,et al. Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice[J]. Plant and Cell Physiology,2013,54(10):1673-1683.
[6]Li H,Du H,Huang K,et al. Identification,and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize[J]. Plant and Cell Physiology,2016,57(6):1153-1168.
[7]Wang Y,Hua X,Xu J,et al. Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum[J]. BMC genomics,2019,20(1):1-18.
[8]Zhang L,Wen A,Wu X,et al. Molecular identification of the magnesium transport gene family in Brassica napus[J]. Plant Physiology and Biochemistry,2019(136):204-214.
[9]Regon P,Chowra U,Awasthi J,et al. Genome-wide analysis of magnesium transporter genes in Solanum lycopersicum[J]. Computational Biology and Chemistry,2019(80):498-511.
[10]Zhao Z,Wang P,Jiao H,et al. Phylogenetic and expression analysis of the magnesium transporter family in pear,and functional verification of PbrMGT7 in pear pollen[J]. The Journal of Horticultural Science and Biotechnology,2018,93(1):51-63.
[11]Mao D,Chen J,Tian L,et al. Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation[J]. The Plant Cell,2014,26(5):2234-2248.
[12]Mao D,Tian L,Li L,et al. AtMGT7:an Arabidopsis gene encoding a low‐affinity magnesium transporter[J]. Journal of integrative plant biology,2008,50(12):1530-1538.
[13]Deng W,Luo K,Li D,et al. Overexpression of an Arabidopsis magnesium transport gene,AtMGT1,in Nicotiana benthamiana confers Al tolerance[J]. Journal of experimental botany,2006,57(15):4235-4243.
[14]Chen J,Li L,Liu Z,et al. Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis[J]. Cell research,2009,19(7):887-898.
[15]Xu X,Wang B,Lou Y,et al. Magnesium Transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis[J]. The Plant Journal,2015,84(5):925-936.
[16]Sun Y,Yang R,Li L,et al. The magnesium transporter MGT10 is essential for chloroplast development and photosynthesis in Arabidopsis thaliana[J]. Molecular Plant,2017,10(12):1584-1587.
[17]Conn S,Conn V,Tyerman S,et al. Magnesium transporters,MGT2/MRS2-1 and MGT3/MRS2-5,are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles[J]. New Phytologist,2011,190(3):583-594.
[18]Li J,Yokosho K,Liu S,et al. Diel magnesium fluctuations in chloroplasts contribute to photosynthesis in rice[J]. Nature Plants,2020,6(7):848-859.
[19]Zhou P,Zhang X,Fatima M,et al. DNA methylome and transcriptome landscapes revealed differential characteristics of dioecious flowers in papaya[J]. Horticulture Research,2020,7(1):81.
[20]許迎港,邹智,郭静远,等. 番木瓜镁离子转运蛋白基因CpMGT1的克隆与功能分析[J]. 热带作物学报,2022,43(6):1114-1121.
[21]Yue J,VanBuren R,Liu J,et al. SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya[J]. Nature Genetics,2022,54(5):715-724.
[22]Gasteiger E,Hoogland C,Gattiker A,et al. Protein Identification and Analysis Tools on the Expasy Server:The Proteomics Protocols Handbook[M]. Totowa:Humana Press,2005.
[23]Mller S,Croning MDR and Apweiler R. Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics,2001,17(7):646-653.
[24]Briesemeister S,Rahnenführer J and Kohlbacher O. Going from where to why—interpretable prediction of protein subcellular localization[J]. Bioinformatics,2010,26(9):1232-1238.
[25]周平,林志楷,郭瑞,等. 低温处理对桃树叶片基因表达及类黄酮合成代谢的影响[J]. 农业生物技术学报,2021,29(7):1283-1294.
[26]丛悦玺,骆东峰,陈坤明,等. 生物镁离子转运体研究进展[J]. 农业生物技术学报,2012,20(7):837-848.
(责任编辑:冯新)