压缩感知联合EPI-ASL技术在缺血性脑卒中的应用研究

2023-11-29 10:37:54孙美荣苏春秋卞红丽赵献策金东生鲁珊珊
磁共振成像 2023年11期
关键词:扫描时间灰质基底节

孙美荣,苏春秋,卞红丽,赵献策,金东生,鲁珊珊*

0 前言

缺血性脑卒中是人类致死和致残的主要原因。全球范围内,我国已成为脑卒中负担最重的国家之一,每年新发缺血性脑卒中患者超过200 万[1]。及时准确地评估患者的脑血流灌注状态对缺血性脑卒中的诊断[2-5]、治疗决策及预后评估[6-8]均有重要意义。动脉自旋标记(arterial spin labeling, ASL)是用非侵入式方式实现灌注成像的MRI 技术[9-10]。与动态磁敏感对比增强灌注成像及CT灌注成像等灌注成像相比,它具有无创、无需对比剂、可重复性高并且可以半定量评估脑血流量[11-13]等优点,在脑卒中和脑肿瘤等疾病诊断中有重要的临床价值。目前传统的ASL成像多采用平面回波成像(echo-planar imaging, EPI)技术,即EPI-ASL。EPI 采集模式无法克服不均匀静态磁场的影响,常会导致几何形变、强度失真和显著的磁敏感伪影,从而影响ASL 的成像效果,导致图像信噪比(signal-to-noise ratio, SNR)和分辨率降低[14-15]。

压缩感知(compressed sensing, CS)技术通过采用非相干性数据欠采样、数据的稀疏化变换和迭代重建等,能够降低图像采集时间[16-19],并且同时保持较高的图像质量[20-23]。近年来有研究表明CS技术可以与EPI-弥散加权成像(diffusion weighted imaging,DWI)相结合,以提高腹部DWI 图像质量及分辨率[24]。然而目前尚未见将CS 技术应用于ASL 成像的报道。本研究拟采用CS联合EPI-ASL(EPIC-ASL)技术进行成像,并与常规EPI-ASL 图像进行对比,探讨EPIC-ASL技术提高颅脑ASL图像质量、评估缺血性脑卒中患者脑灌注的临床应用价值。

1 材料与方法

1.1 研究对象

前瞻性收集2021 年12 月至2022 年6 月在南京医科大学第一附属医院放射科进行EPI-ASL 及EPIC-ASL 图像采集的受试者,包括健康组及梗死组。健康组纳入标准:既往无脑部疾病、脑部外伤、手术史的健康志愿者;排除标准:(1)有幽闭恐惧或其他MR 扫描禁忌证者;(2)难以配合检查,图像运动伪影明显。梗死组纳入标准:(1)一周内经头颅MRI 发现颅内急性梗死灶患者;(2)临床病历资料完整;排除标准:(1)图像运动伪影明显;(2)口腔金属植入物严重影响图像评估。最终纳入58 例受试者,其中健康组32 名、急性脑梗死患者26 例。本研究遵守《赫尔辛基宣言》,并经南京医科大学第一附属医院伦理委员会批准,批准文号:2021-SRFA-111,全体受试者均签署了知情同意书。

1.2 检查方法

采用飞利浦Ingenia CX 3.0 T MR 扫描仪(Philips Healthcare, Best, The Netherlands),32通道头颅相控阵线圈。对所有受试者均行头颅MRI常 规 序 列(T2WI、T1WI、DWI、T2-FLAIR)、EPI-ASL 和EPIC-ASL 扫 描。ASL 采 用2D-pCASL (Pulse Arterial Spin Labeling echo-planar imaging, PASL),EPI-ASL 扫描参数为:TR 4550 ms, TE 16 ms,翻转角90°,FOV 240 mm×240 mm,层数16,层厚5 mm,层间距1 mm,矩阵88×88,层间分辨率2.7 mm×2.7 mm,平均激励次数(number of signal average, NSA)1,敏感度编码(sensitivity encoding, SENCE)2.3,标记后延迟时间2000 ms,扫描时间4 min 42 s;EPIC-ASL 扫描参数为:TR 4550 ms, TE 16 ms,翻转角90°,FOV 240 mm×240 mm,层数16,层厚5 mm,层间距1 mm,矩阵128×128,层间分辨率1.9 mm×1.9 mm,NSA 1,CS 加速因子2.3,标记后延迟时间2000 ms,扫描时间4 min 42 s。

1.3 图像分析

1.3.1 ASL图像质量主观评分

ASL 图像质量由两名放射诊断医师(一名从事中枢神经系统影像诊断5年的主治医师;一名从事中枢神经系统影像诊断7 年的主治医师)进行独立评估,采用四分李克特量表[25]分别对健康组及梗死组EPI-ASL 及EPIC-ASL 图像中脑白质、脑灰质、基底节区、脑干、小脑半球几个解剖区进行影像学评估。意见不一致时由第三名神经放射学专家(从事中枢神经系统影像诊断11年的副主任医师)评估和验证。

具体评估标准如下:1 分,解剖结构显示不清,图像质量差;2 分,解剖结构可以显示,图像质量中等;3分,解剖结构显示较好,图像质量良好;4分,解剖结构显示清晰,图像无失真且具有高解剖细节。评分示例如图1。

图1 图像质量评分示例。1A~1D:基底节区图像质量评分依次为:4 分(解剖结构显示清晰,图像无失真且具有高解剖细节)、3分(解剖结构显示较好,图像质量良好)、2分(解剖结构可以显示,图像质量中等)、1分(解剖结构显示不清,图像质量差)。Fig.1 Examples of image quality scores.1A-1D:The image quality of basal ganglia area are graded as 4 (the anatomical structure is clearly displayed, with high anatomical details and no distortion), 3 (the anatomical structure is well displayed and the image quality is good), 2 (the anatomical structure can be displayed with medium image quality) and 1 (the anatomical structure is unclearly displayed with poor image quality).

1.3.2 ASL图像质量定量分析

由以上两位放射诊断医师分别对健康组及梗死组EPI-ASL 及EPIC-ASL 图像进行定量分析。选取脑白质、脑灰质、基底节区、脑干、小脑作为感兴趣区(region of interest, ROI),勾画圆形ROI,面积为100 mm2。每组数据从EPI-ASL 图像手动勾画ROI,再依次复制到同层面EPIC-ASL 图像上,测量各ROI 的信号值(signal intensity, SI),选取基底节区同层面四周空气的标准差(standard deviation, SD)为噪声,计算各ROI 的SNR 与灰质/白质对比噪声比(contrast-to-noise ratio, CNR),见公式(1)~(2)。

1.3.3 梗死区的主观及定量评估

基于DWI 序列,记录急性梗死灶位置,测量梗死最大层面直径。

由以上两位放射诊断医师分别对梗死组患者EPI-ASL及EPIC-ASL图像进行主观及定量评估,意见不一致时由第三名具有11年神经影像诊断经验的神经放射学专家评估和验证。评估内容如下:

(1)梗死边界:参照DWI图显示的急性梗死灶,将ASL 上梗死灶的显示情况分为3 级,1 级为梗死不能显示;2级为梗死边界模糊;3级为梗死边界清晰。评分示例如图2。

图2 梗死区边界评分示例。2A、2C、2E为弥散加权成像,2B、2D、2F分别为其相对应的动脉自旋标记图像,白箭表示梗死区,2B、2D、2F图像中梗死区边界评分分别为:3级(梗死边界清晰)、2级(梗死边界模糊)、1级(梗死不能显示)。Fig.2 Examples of grading of the infarct boundary.2A, 2C and 2E are diffusion weighted imaging images, while 2B, 2D and 2F are the corresponding arterial spin labeling images.White arrows indicate acute cerebral infarction.The infarct boundary in image 2B, 2D and 2F are scored as 3 (the infarct boundary displayed clearly), 2 (the infarct boundary displayed blurred) and 1 (the infarct boundary cannot be displayed), respectively.

(2)梗死区SNR:将DWI 及ASL 图像做配准(MATLAB 2020a,The MathWorks, Natick, MA, USA),在DWI 图像沿着梗死区边缘勾画ROI,复制到同层面对侧镜像区域,测量梗死区SI,计算梗死区的SNR(SNR梗死=SI梗死/SD空气)与梗死/白质CNR [CNR梗死/白质=(SI梗死-SI白质)/SD空气]。

(3)梗死区脑灌注评估:基于脑血流量CBF图,获得上述各ROI 内的SI,并计算获得相对脑血流量(relative cerebral flow, rCBF)值(rCBF=SI梗死/SI对侧脑实质)。

1.4 统计学分析

采用SPSS 21.0 统计软件进行统计学分析。采用Kolmogorov-Smirnov法进行正态性检验,服从正态分布的计量资料以±s表示,不服从正态分布的计量资料以中位数(四分位数间距)表示;计数资料采用频数及百分比表示。对两名诊断医师的主观评分及定量资料结果分别进行Kappa一致性检验及组内相关系数评价(intra-class correlation coefficient,ICC)。Kappa 或ICC 值≥0.8 表明一致性较好;0.6≤Kappa/ICC<0.8表明一致性中等;<0.6表明一致性差。对两组ASL 图像主观评分采用Wilcoxon 符号秩和检验,对服从正态分布的计量资料的比较采用配对样本t检验,不服从的计量资料采用非参数Mann-WhitneyU检验。P<0.05 表明差异具有统计学意义。

2 结果

2.1 临床资料

共纳入病例资料健康组32 例(男14 例,女18 例),年龄23~79(50.80±14.95)岁;梗死组26 例(男22 例,女4 例),年龄41~80(61.50±9.67)岁,卒中发病到MRI 扫描间隔时间2~15 天。临床表现为:肢体无力、麻木、口齿不清等;梗死分别位于幕上白质5 例,灰质5 例,基底节区11 例,脑干4 例,小脑1例;梗死直径4.1~54.9(16.34±11.42)mm。

2.2 EPIC-ASL及EPI-ASL图像质量对比

两名医师对图像质量的主观评分一致性良好,Kappa值为0.692~0.895。EPIC-ASL在脑白质、脑灰质、基底节区、脑干及小脑区域的图像质量评分均显著优于EPI-ASL图像(P值均<0.001),其中对于灰质及基底节区的显示质量提高尤为明显。基于EPIC-ASL,53例(91.4%)及54例(93.1%)患者的灰质及基底节区评分均≥3 分,明显优于EPI-ASL(P值<0.001),具体结果见表1,代表性EPIC-ASL和EPI-ASL图像如图3所示。

表1 EPIC-ASL和EPI-ASL图像质量主观评分分析比较Tab.1 Subjective analysis of EPIC-ASL and EPI-ASL

图3 男,31 岁,健康志愿者。EPIC-ASL 及EPI-ASL 图像对比图例。3A~3D 为EPIC-ASL 图像,3E~3H 为EPI-ASL 图像。对比各感兴趣区(白质、灰质、基底节区、脑干、小脑)解剖结构显示能力及信噪比,EPIC-ASL 图像质量均优于EPI-ASL(各感兴趣区图像质量评分:4、3、4、3、3 vs.2、2、3、1、2)。EPIC-ASL:压缩感知联合平面回波成像的动脉自旋标记技术;EPI-ASL为平面回波成像的动脉自旋标记技术。Fig.3 The comparison between EPIC-ASL and EPI-ASL in a 31-year-old male healthy volunteer,3A-3D are EPIC-ASL images and 3E-3H are EPI-ASL images.The image quality and signal-to-noise ratio of each region of interest (white matter, gray matter, basal ganglia, brainstem,cerebellum) in EPIC-ASL are better than those of EPI-ASL (scores for each ROI: 4, 3, 4, 3, 3 vs.2, 2,3, 1, 2).EPIC-ASL: compressed sensing combined with echo-planar -imaging arterial spin labeling;EPI-ASL: echo-planar-imaging arterial spin labeling.

定量分析结果显示:两位医师对SNR评估结果的一致性良好,ICC值为0.644~0.978。EPIC-ASL图像在脑白质、脑灰质、基底节区、脑干和小脑的SNR及灰白质CNR 方面均明显高于EPI-ASL,且差异具有统计学意义(P值均<0.001),具体结果见表2。

表2 EPIC-ASL和EPI-ASL图像的定量分析比较Tab.2 Quantitative analysis of EPIC-ASL and EPI-ASL

2.3 EPI-ASL及EPIC-ASL对梗死区评估对比

两名医师对梗死区定性及定量评估的一致性较好,Kappa 及ICC 值范围为0.609~0.921。主观评估显示EPIC-ASL 图像对梗死区边界的显示优于EPI-ASL(P<0.001),高分辨率EPIC-ASL 图像能够清晰显示更小的梗塞灶边界,而EPI-ASL图像不可识别(图4)。定量分析结果显示:基于EPIC-ASL图像测量获得的梗死区SNR梗死及CNR梗死/白质均高于EPI-ASL(P均<0.05)。两组图像测量所得的梗死区rCBF 值相似,差异无统计学意义(t=0.190,P>0.05)。具体结果详见表3。

表3 脑梗死患者EPIC-ASL和EPI-ASL图像的主观评分及定量分析比较Tab.3 Analysis of EPIC-ASL and EPI-ASL images in patients with cerebral infarction

图4 52 岁,男,右侧基底节区急性单发皮层下梗死(箭所示),直径约4 mm。4A~4D 依次为DWI、ADC、EPIC-ASL 及EPI-ASL 图 像。对 比DWI 图像,EPIC-ASL 对小梗死区显示良好(评分:3 级),而在EPI-ASL 图像中不能准确显示(评分:1 级),同时图像整体信噪比较低。DWI:弥散加权成像;ADC:表观弥散系数;EPIC-ASL:压缩感知联合平面回波成像的动脉自旋标记技术;EPI-ASL:平面回波成像的动脉自旋标记技术;SNR:信噪比。Fig.4 A 52-year-old male with acute single subcortical infarction in the right basal ganglia (shown by white arrow).The diameter of infarction is about 4 mm.4A-4D images are DWI, ADC, EPIC-ASL, and EPI-ASL image, respectively.The small infarction lesion can be well demonstrated on EPIC-ASL (Score:3), but cannot be displayed on EPI-ASL (Score:1).The SNR of EPI-ASL image is lower than that of EPIC-ASL.DWI: diffusion weighted imaging; ADC: Apparent diffusion coefficient; EPIC-ASL: compressed sensing combined with echo-planar -imaging arterial spin labeling; EPI-ASL: echo-planar -imaging arterial spin labeling; SNR: signal-to-noise ratio.

3 讨论

本研究将压缩感知CS 技术与传统的EPI-ASL 相结合(EPIC-ASL),探讨了EPIC-ASL 技术在提高ASL图像质量及其在脑梗死评估中的临床价值。结果显示:在相同的扫描时间下,相较于传统的EPI-ASL,EPIC-ASL 对脑白质、脑灰质、基底节区、脑干及小脑区域的解剖结构显示能力、SNR及CNR均有明显提高。更高的层间分辨率使EPIC-ASL对急性脑梗死病灶特别是小病灶边界的显示更具优势;同时EPIC-ASL 对梗死区rCBF 值的评估与EPI-ASL 相比差异并无统计学意义,提示EPIC-ASL 能够准确定量评估脑灌注水平。本研究为国内外首次将CS技术应用于EPI-ASL,提高了ASL的图像质量及分辨率,有望对急性缺血性脑卒中患者的临床评估提供帮助。

3.1 EPIC-ASL的技术优势

目前临床多采用EPI 序列获取ASL 图像。EPI 序列由于其特殊的梯度编码方式,实现了一次射频脉冲激发采集整个K-空间数据,使其能够在较短的时间内完成全脑的扫描,但是这种特殊的成像方式也给平面回波成像序列引入了低SNR、低分辨率及伪影形变等问题[1]。

既往研究中,CS因其能够大幅度提升MRI采集效率、降低采集时间为大家所熟知[26-28]。它主要是通过利用信号的稀疏特性,在远小于Nyquist采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性迭代算法进行图形重建[29-30],选择适当的CS加速因子,可以在保证图像质量的同时,降低扫描时间[31-33]。近年来,CS 技术开始被探索与EPI 技术结合。KAGA等[24]将CS 技术与DWI 序列相结合应用于腹部MRI 扫描,证实了相对于并行采集(parallel imaging, PI)DWI,EPIC-DWI可以显著提高图像质量,ADC值更均匀且噪声更低。YOSHIDA等[34]发现EPIC-DWI可用于改善头颈部传统DWI成像质量。但据我们所知,目前尚缺乏将EPIC技术用于ASL成像的探索研究。

本研究采用了联合CS 技术的EPIC-ASL,保持EPIC-ASL 与EPI-ASL 序列的FOV 及扫描时间一致,但提高了EPIC-ASL 的矩阵。传统意义来说,在相同的FOV 下,矩阵越大,图像的分辨率越高,但图像噪声容易增加,SNR 则会降低。但本结果显示,即使EPIC-ASL 图像的层间分辨率更高,相较于传统的EPI-ASL,EPIC-ASL 图像的SNR 和CNR 依然有明显提升,从而保证了EPIC-ASL 图像的质量评分更佳,3 分及以上区域明显多于EPI-ASL,特别是在基底节区、灰质等部位。这一结果与KAGA 等[24]的研究结果一致,进一步证实了CS 技术在不额外增加扫描时间的同时,可以显著提高ASL 的图像质量,提示EPIC-ASL有望在一定程度上解决传统EPI-ASL 序列图像伪影大、分辨率低的困扰。

3.2 EPIC-ASL对梗塞灶的评估

在对急性梗死灶的评估方面,本研究同样发现,基于EPIC-ASL 图像获得的梗死区域SNR 及CNR 均高于EPI-ASL,能够更清晰地描绘梗死相关低灌注区域。

更有意义的是,传统的ASL 层间分辨率一般为3 mm2,对于小梗死灶的评估受限。在本研究中,在相同的扫描时间内,将EPIC-ASL 的层间分辨率提高至1.9 mm2。结果显示,基于EPIC-ASL,50.0%患者的脑梗死病灶边界可以清晰显示,显著高于EPI-ASL(3.8%)。既往研究中,李青等[35]曾将CS 技术和时间飞跃法-磁共振血管成像(time of flight-magnetic resonance angiography, TOF-MRA)结合,提升分辨率至0.4 mm×0.4 mm×0.4 mm。他们发现高分辨率CS TOF-MRA 可提高烟雾病出血相关细小血管的显示,血管边缘更锐利,明显优于CTA。本研究结果与其一致:高分辨率EPIC-ASL 图像能够清晰显示更小的,甚至是直径4 mm 的梗死灶边界,而这些病灶在EPI-ASL 图像则难以识别。这一发现提示,在临床实践中,EPIC-ASL 技术对梗死灶的评估可能更具优势。此外,在对于梗死区rCBF的定量评估中,EPIC-ASL技术与传统的EPI-ASL技术之间差异并无统计学意义,表明EPIC-ASL 能够准确定量评估脑灌注水平,可用于急性脑卒中的临床治疗疗效随访及预后的评估。

3.3 本研究的局限性

本研究存在一定的局限性:(1)EPI-ASL 和EPIC-ASL 扫描顺序未进行随机(EPI-ASL 先,EPIC-ASL 后),因此,随扫描时间延长,可能会出现因患者配合不佳所致图像质量下降的偏倚;(2)本研究中ASL扫描范围为96 mm,未能包括全脑(颅顶和幕下少部分层面无法充分覆盖),但考虑到扫描时间,这一扫描范围也基本可满足脑卒中患者的临床评估需要;(3)本研究采用手动勾画ROI,不可避免地会存在一定的误差;(4)目前临床ASL 扫描广泛使用3D 采集,3D ASL序列具有较高的SNR和更好的背景抑制效率。本研究仅初步探讨了EPIC 技术在2D ASL 中的应用,后续我们会继续将CS 技术应用到3D 图像中去,有望进一步提升ASL图像质量。

4 结论

综上所述,高分辨率EPIC-ASL 可以在不增加扫描时间的基础上,进一步提升ASL图像分辨率及图像质量,有利于脑梗死病灶的检出及评估,为缺血性脑卒中患者的临床治疗及随访提供帮助。

作者利益冲突声明:全体作者均声明无利益冲突。

作者贡献声明:鲁珊珊设计本研究的方案,对论文内容的重要方面进行了关键性修改;孙美荣起草和撰写论文,参与数据的获取、分析和解释;苏春秋、卞红丽、赵献策、金东生获取、分析和解释本研究的数据,对论文的部分重要内容进行了修改和指导;鲁珊珊获得国家自然科学基金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。

猜你喜欢
扫描时间灰质基底节
扫描时间的指纹
睿士(2023年10期)2023-11-06 07:05:44
急性缺血性脑卒中溶栓治疗中参数优化MRI的应用有效性和临床指导意义
扩大翼点入路改良手术治疗基底节区脑出血并脑疝疗效观察
人工智能研发新核磁共振以缩短扫描时间
微创医学(2019年2期)2019-12-22 13:31:16
2型糖尿病对阿尔茨海默病脑灰质的影响:DKI初步研究
COPD患者认知功能障碍和大脑灰质密度异常的磁共振研究
保守与微创穿刺治疗基底节脑出血的疗效及安全性探讨
中外医疗(2015年18期)2016-01-04 06:51:53
探讨预防基底节脑出血钻孔引流术后再出血及早期治疗
基于体素的MR形态学分析对鼻咽癌放疗后脑灰质体积改变的研究
基底节区出血与中医证候相关性研究
中医研究(2014年6期)2014-03-11 20:28:56