超声对直接激光沉积钛基复材中未熔TiC聚集现象的影响

2023-11-21 03:26张子傲严新锐宋晨晨马广义牛方勇吴东江
精密成形工程 2023年11期
关键词:样件熔池微观

张子傲,严新锐,宋晨晨,马广义,牛方勇,吴东江

超声对直接激光沉积钛基复材中未熔TiC聚集现象的影响

张子傲,严新锐,宋晨晨,马广义*,牛方勇,吴东江

(大连理工大学,辽宁 大连 116024)

改善直接激光沉积TiCp增强TC4复合材料中未熔TiC(Unmelted TiC,UMT)的聚集情况,提高钛基复合材料的力学性能。利用定点超声辅助直接激光沉积工艺制备了20%、30%(质量分数)TiCp/TC4复合材料,通过金相显微镜观察UMT的分布情况,采用X射线衍射仪分析物相组成、衍射峰强度与半峰宽变化。通过扫描电子显微镜(SEM)进一步分析样件的微观组织,并使用SEM配备的能谱仪模块对元素分布情况和元素含量进行分析,同时观察拉伸样件的断口微观形貌和初生TiC情况。分别采用显微硬度仪和微机控制电子万能试验机测试样件的显微硬度与拉伸性能。超声产生的声流、空化和机械效应不断搅拌熔池,增大了熔池的润湿性,初生TiC熔化/溶解更加充分,改善了UMT在熔覆层边缘的聚集情况。在超声能场辅助作用下,20%、30%(质量分数)TiCp/TC4复合材料的平均显微硬度分别提升了8.4%和12.7%,极限拉伸性能分别提升了8.0%和15.0%。定点超声高频振动可以有效改善UMT聚集现象,使TiCp在TC4基体中分布得更加均匀,增强了熔覆层间结合强度,最终使沉积件力学性能得到提升。

直接激光沉积;TiCp/TC4复合材料;超声振动;UMT聚集;微观组织;力学性能

钛合金因具备优异的耐腐蚀性、较高的比刚度和较好的高温性能,已被广泛应用于航空工业中[1-7],例如高压机舱面板、高温涡轮风扇、整体叶盘等关键零部件[8-10]。但在高效率、高性能的发展趋势下,传统钛合金材料难以满足苛刻环境下更高性能的需求,因此,通过添加增强相改善钛合金性能的钛基复合材料(Titanium Matrix Composites,TMC)成为新一代材料的研究重点[7,9]。TC4作为常用的钛合金,具备与TiC相近的密度和良好的相容性,添加TiC增强TC4可以有效提高其硬度、耐磨性和高温稳定性[11-17],进而提高钛合金的综合性能。

Liu等[18]通过直接激光沉积制备了0%~40%(体积分数)TiC增强TC4梯度复合材料,当TiC的体积分数超过5%时,便很难完全熔化/溶解,并且未熔的颗粒在马兰戈尼流强作用下被推向熔池边缘,导致其分布不均匀,降低了熔合区域强度。Zeng等[19]指出在激光熔化沉积20%(质量分数)TiC/TC4过程中,温度梯度和马兰戈尼流动会导致层间未溶解TiC发生聚集,从而降低了复合材料的延展性与强度。Wang等[20-21]也指出UMT的聚集会使层间产生应力集中,使材料在拉伸过程中过早失效,甚至在制备过程中由于应力过大而产生裂纹。

TiC增强相的添加会使钛合金获得更优异的硬度与耐磨性能,但是由于直接激光沉积的快热快冷特点,TiC难以完全熔化/溶解,熔池内较大的温度梯度[22]与马兰戈尼强流作用将UMT推向熔覆层边缘聚集,降低了熔池的润湿性,严重影响了层间结合强度。许多研究表明,超声可以促进组织均匀、晶粒细化[23-25]。因此,本文设计了超声辅助平台,采用定点超声辅助直接激光沉积技术制备了20%、30%(质量分数,下同)TiCp/TC4样件,通过超声的高频振动传入熔池产生的空化、声流、机械等效应干预凝固过程,成功改善了UMT的聚集现象,显著提高了TMC的力学性能。

1 实验

1.1 材料

实验中用的粉末为粒径45~95 μm的球形TC4粉末和粒径45~75 μm不规则形状的TiC粉末,如图1所示,粉末的化学成分如表1和表2所示。在实验前先将2种粉末按一定质量比例充分混合,并置于120 ℃的烘干箱中进行4 h的干燥处理。基板选用130 mm× 130 mm×9 mm的TC4板材,在实验开始前,用240#砂纸进行打磨并用酒精擦拭以去除基板表面的氧化层。

1.2 方法

实验时的超声辅助激光增材制造系统主要包括JK 1002型Nd:YAG连续激光器(JK 1002,GSI Lumonics)、DPSF-2型送粉器(中国航空工业)、超声控制器与发生器(Hangzhou Fransonic Technology Co., Ltd.)、数控五轴机床(RESUM Inc.)和高纯氩气。实验采取双向往复扫描的方式沉积样件,扫描路径长度为30 mm。沉积实验相关工艺参数如下:激光功率为480 W,扫描速度为150 mm/min,送粉速率为2.0 g/min,超声功率为1 500 W。超声辅助激光增材系统示意图如图2所示。

根据检测需要,对制备的样件进行线切割,之后进行磨抛处理,达到金相试样标准后进行检测。通过蔡司智能金相显微镜(Axioscope 5)观察UMT分布情况。之后利用X射线衍射仪(X-ray Diffractometer 6000)分析物相组成、衍射峰强度与半峰宽变化。通过扫描电子显微镜(SU-5000)进一步分析微观组织,并使用SEM配备的EDS模块对元素分布和含量进行分析,同时观察拉伸样件断口微观形貌和初生TiC情况。通过显微硬度仪(HV-1000A)检测样件显微硬度,为保证实验数据的准确性,避开UMT连续打10个点,计算平均值。采用微机控制电子万能试验机(WDW-20E)测试样件的极限拉伸性能,每组参数制备3个样件进行测试,样件尺寸如图3所示。

图1 粉末微观形貌

表1 TC4粉末化学成分

表2 TiC粉末化学成分

图2 超声辅助激光增材系统示意图

图3 TiCp/TC4拉伸样件示意图

2 结果与分析

2.1 宏观尺寸与形貌

使用游标卡尺对样件的宽度进行测量,结果如图4所示。当TiC的质量分数为20%时,直接激光沉积制备的复合材料样件宽度为(2.48±0.02)mm,施加超声后,样件的平均宽度为(2.60±0.04)mm。当TiC的质量分数为30%时,超声施加前后复合材料样件宽度分别为(2.45±0.03)mm和(2.54±0.03)mm。当TiC的质量分数从20%增大到30%时,熔池中UMT的含量也会增多,而UMT在熔池中会降低熔池的流动性[20],不利于液体金属的铺展,使直接激光沉积薄壁件宽度减小。通过超声对熔池进行干预,超声头在基板上高频振动并作用于熔池内部,使液体金属易于向两边铺展,从而增大了层间的结合强度。

图4 样件尺寸

对无超声和1 500 W超声功率下制备的20%和30%TiCp/TC4复合材料截面进行微观组织观察,如图5所示。可以看到,与20%相比,直接激光沉积制备的30%TiCp/TC4复合材料中的UMT明显更多,这主要是因为随着TiC含量的增加,激光能量无法使其全部熔化/溶解[26]。由图5a和图5c可知,UMT主要聚集在相邻沉积层的结合区,这直接影响了基体凝固过程中的收缩,使TC4基体内部产生了残余拉应力[20],严重影响了层与层之间的结合,降低了材料的塑性。同时陶瓷与金属之间的润湿性较差,在机械加载过程中,脆性的陶瓷-金属界面更易破裂,从而导致材料过早失效[27]。施加超声后,如图5b和图5d所示,超声振动产生的声流与空化效应不断干预熔池凝固行为,为TiC的熔融裂解提供了搅拌作用,促进了TiC充分熔化和均匀分布。

图5 样件xz截面UMT宏观分布

2.2 X射线衍射

对制备的样件进行物相分析,其检测结果如图6所示。2种工艺制备的20%和30%TiCp/TC4复合材料的物相组成均为α-Ti、β-Ti和TiC,无其他物相生成。与20%相比,30%TiCp/TC4复合材料的TiC衍射峰强度更高,这是因为随着TiC含量的增加,基体中溶解并生成了更多的初生TiC。

对TiC衍射峰进行高斯拟合得到半高宽(FWHM),如图6b所示。可以发现,随着1 500 W超声的引入,除(200)TiC衍射峰外,(111)TiC、(220)TiC、(311)TiC、(222)TiC衍射峰的FWHM均增大。Debye-Scherrer公式如式(1)所示[28]。

式中:为X射线波长(Cu靶波长为0.154 056 nm);为检测样品的衍射峰半高宽;为衍射角;为晶粒尺寸,nm。衍射峰半峰宽的增大意味着晶粒尺寸减小,并对位错、应力产生了一定影响[29]。因此,在超声辅助直接激光沉积成形TiCp/TC4复合材料过程中,超声干预熔池的凝固有助于细化晶粒、减小残余应力。

2.3 微观组织与元素分布

通过扫描电镜观察样件截面的微观组织,如图7所示。在直接激光沉积制备TiCp/TC4复合材料的过程中,激光能量的输入使TiC发生熔化/溶解,基体中结晶的初生TiC形态有以下4种:未溶TiC(UMT)、枝晶状TiC(DPT)、链状TiC(CPT)和颗粒状TiC(GPT)[30]。由于激光的快冷快热特性,相邻层之间的温度梯度较大[22],加上剧烈的马兰戈尼对流作用,促使未溶颗粒流向熔池顶端[31]。当激光扫掠过后,UMT颗粒在沉积层顶端凝固,如图7a和图7d所示。当超声高频振动引入熔池后,UMT聚集现象得到改善,如图7b和图7e所示,并且在超声的作用下,UMT不断与液体金属接触而继续溶解。在图7c和图7f中,TMC的微观组织以DPT与CPT为主,共晶GPT生长得也较为充分。其中30%TMC基体中的DPT生长得更为粗大,CPT更少。对有无施加超声制备的30%TiCp/TC4复合材料截面的微观组织进行分析,结果如图8所示。可以发现,在超声作用下,微观组织中DPT尺寸明显减小,这将有助于提升初生TiC与基体的结合强度[30]。直接激光沉积制备的TiCp/TC4复合材料的微观缺陷主要是气孔,这些孔隙主要分布于UMT内部,来自于原始TiC粉末本身的孔隙。超声的空化作用也有利于排出TiC溶解于基体后产生的气泡,提高材料的致密度。超声高频振动对TMC熔池凝固过程中初生TiC的干预作用如图9所示,超声高频振动改善了UMT的聚集现象,有利于TiCp充分熔化/溶解,同时DPT被破碎,尺寸减小。

图7 样件xz截面微观组织

图9 超声对熔池中TiC形貌影响

对30%TiCp/TC4复合材料组织中的元素分布情况进行分析,如图10和图11所示。可以看到,不管是否施加超声,材料中主要存在Ti、C、Al、V 4种元素,在基体中均能观察到C元素的分布,这说明基体中也固溶了部分溶解的C,形成了间隙固溶体,同时,初生TiC上也固溶了少量的Al元素。值得注意的是,在超声辅助下制备的TMC基体中C元素含量更高,这是因为超声的高频振动效应使直接激光沉积过程中的熔池流动速度变快,让初生TiC与液体金属有更多的接触时间与更大的接触面积,使更多的TiC被熔化/溶解。对TMC中初生TiC与基体进行EDS分析,发现2种工艺下UMT中的C原子含量均低于原始粉末(通过原始TiC粉末元素质量比,计算出C的原子数分数约为56%)的,这说明在沉积过程中TiC颗粒进一步被熔化/溶解,而C原子的固溶强化作用将有助于提升TMC的力学性能[32]。

2.4 显微硬度

对不同工艺制备的TMC样件进行显微硬度检测,结果如图12所示。可以看到,20%TMC无超声时的平均显微硬度为(463.7±9.5)HV0.5,1 500 W超声作用下的平均显微硬度为(497.1±17.0)HV0.5,提升了8.4%;而30%TMC在无超声时的平均显微硬度为(496.0±16.2)HV0.5,超声介入后平均显微硬度为(559.1±17.8)HV0.5,提升了12.7%。这是因为随着超声的引入,UMT在熔池中溶解并分布均匀,TMC中DPT的含量也逐渐增多,这些高硬质的TiC能抑制基体变形,导致显微硬度显著提高。

图10 无超声30%TiCp/TC4复合材料元素与EDS分析

图11 1 500 W超声下30%TiCp/TC4复合材料元素与EDS分析

图12 显微硬度检测结果

通过EDS对30%TiCp/TC4基体元素进行分析,发现由超声辅助制备的复合材料C原子含量增加,TiC在超声的作用下进一步溶解,使更多的C固溶在基体中。Fleischer强化公式如式(2)所示[33-34]。

式中:Δss为强化强度;为平均取向系数;为剪切模量;为博格斯向量;ss为常数;为元素的质量分数。所以C元素含量的增加会强化TC4基体,有利于提高TiCp/TC4复合材料的显微硬度。

2.5 拉伸性能

有无超声辅助下直接激光沉积20%和30%TiCp/ TC4复合材料的工程应力-应变曲线如图13所示。可以看到,直接激光沉积20%TiCp/TC4的极限拉伸强度为(712.6±9.9)MPa,超声辅助下的极限拉伸强度为(769.9±6.8)MPa,提高了8.0%。30%TiCp/TC4复材基体中UMT含量大幅度增加,使极限拉伸强度快速下降,在无超声作用下极限拉伸强度仅为(628.3±11.9) MPa,超声介入后极限拉伸强度为(722.4±4.4) MPa,比无超声时提高了15.0%。拉伸性能的提升主要归因于聚集的UMT在超声作用下分布均匀,而均匀后的TiC会缓解凝固过程中基体产生的收缩应力,在拉伸过程中延缓断裂失效。2种TiC比例的TMC的断后伸长率变化不大,这是因为初生TiC为脆性相,在拉伸过程中会阻碍TC4基体的塑性变形,导致应力集中进而使材料断裂失效[35]。

有无超声辅助下直接激光沉积20%和30%TiCp/ TC4复合材料的拉伸断口形貌如图14所示。可以看出,在无超声作用时,拉伸断口有积聚的UMT,脆性的UMT会阻碍基体的塑性变形,造成应力集中,断裂裂纹会先在UMT中萌生,导致材料过早断裂[36]。此外,在部分UMT上可以观察到气孔存在,这些气孔也有可能导致TMC提前断裂失效。在施加超声后,UMT分布均匀且尺寸变小,大部分UMT上的气孔在其溶解后被排出,材料的致密度与拉伸强度得到提高。在脆性的UMT断口处存在解理台阶,且表面凹凸不平,这表明TMC主要发生了解理断裂。

3 结论

利用超声能场辅助激光增材技术,改善了TiCp/TC4复合材料中UMT的聚集情况,增大了TiCp/TC4复合材料熔池的润湿性。重点对0 W和1 500 W超声功率辅助下制备的20%和30%TiCp/TC4复合材料的尺寸、微观组织以及力学性能进行分析,结论如下:

1)定点超声高频振动可以有效改善UMT聚集现象,使TiCp在TC4基体中充分熔化/溶解且分布更加均匀,液体熔池易于向外铺展,样件宽度增大。

2)超声的空化、声流和机械效应耦合对熔池有搅拌作用,但不会改变复合材料的物相。在超声辅助制备的TMC基体中,DPT尺寸减小、数量增多,基体中C元素含量更高。

3)超声作用提高了钛基复合材料的显微硬度。在有超声辅助时,20%和30%TiCp/TC4复合材料的硬度分别为(497.1±17.0)HV0.5和(559.1±17.8)HV0.5,与无超声时相比分别提升了8.4%和12.7%。超声作用减缓了机械加载过程中TMC的过早失效,在有超声辅助时,20%和30%TiCp/TC4复合材料的硬度分别为(769.9±6.8) MPa和(722.4±4.4) MPa,与无超声时相比分别提升了8.0%和15.0%。

[1] WANG B H, CHENG L, LI D C. Study on Very High Cycle Fatigue Properties of Forged TC4 Titanium Alloy Treated by Laser Shock Peening under Three-point Bending[J]. International Journal of Fatigue, 2022, 156: 106668.

[2] LI B Q, ZHOU H G, LIU J F, et al. Multiaxial Fatigue Damage and Reliability Assessment of Aero-engine Compressor Blades Made of TC4 Titanium Alloy[J]. Aerospace Science and Technology, 2021, 119: 107107.

[3] TAN C L, WENG F, SUI S, et al. Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.

[4] LI X Q, PAN C L, FU D J, et al. Fabrication of Highly Dissimilar TC4/Steel Joint with V/Cu Composite Transition Layer by Laser Melting Deposition[J]. Journal of Alloys and Compounds, 2021, 862: 158319.

[5] CHENG R H, LUO X T, HUANG G H, et al. Corrosion and Wear Resistant WC17Co-TC4 Composite Coatings with Fully Dense Microstructure Enabled by In-situ Forging of the Large-sized WC17Co Particles in Cold Spray[J]. Journal of Materials Processing Technology, 2021, 296: 117231.

[6] GURRAPPA I. Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications[J]. Materials Characterization, 2003, 51(2/3): 131-139.

[7] WANG T, LIU X Y, CHEN S Y, et al. Study on Microstructure and Tribological Properties of Nano/Micron TiC/TC4 Composites Fabricated by Laser Melting Deposition[J]. Journal of Manufacturing Processes, 2022, 82: 296-305.

[8] LV Y H, LI J, TAO Y F, et al. High-temperature Wear and Oxidation Behaviors of TiNi/Ti2Ni Matrix Composite Coatings with TaC Addition Prepared on Ti6Al4V by Laser Cladding[J]. Applied Surface Science, 2017, 402: 478-494.

[9] ZHU L D, XUE P S, LAN Q, et al. Recent Research and Development Status of Laser Cladding: A Review[J]. Optics & Laser Technology, 2021, 138: 106915.

[10] WANG S W, ZHAO Z Y, BAI P K, et al. Effect of in Situ Synthesis TiC on the Microstructure of Graphene/Ti6Al4V Composite Fabricated by Selective Laser Melting[J]. Materials Letters, 2021, 304: 130715.

[11] HAYAT M D, SINGH H, HE Z, et al. Titanium Metal Matrix Composites: An Overview[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438.

[12] QIAO G W, ZHANG B, BAI Q, et al. Machinability of TiC-reinforced Titanium Matrix Composites Fabricated by Additive Manufacturing[J]. Journal of Manufacturing Processes, 2022, 76: 412-418.

[13] ZHAO T, ZHANG S, ZHOU F Q, et al. Microstructure Evolution and Properties of In-situ TiC Reinforced Titanium Matrix Composites Coating by Plasma Transferred Arc Welding (PTAW)[J]. Surface and Coatings Technology, 2021, 424: 127637.

[14] CHEN D Q, LIU D, LIU Y F, et al. Microstructure and Fretting Wear Resistance of γ/TiC Composite Coating in Situ Fabricated by Plasma Transferred Arc Cladding[J]. Surface and Coatings Technology, 2014, 239: 28-33.

[15] AMMISETTI D K, KRUTHIVENTI S S H. Recent Trends on Titanium Metal Matrix Composites: A Review[J]. Materials Today: Proceedings, 2021, 46: 9730-9735.

[16] PEILLON N, FRUHAUF J B, GOURDET S, et al. Effect of TiH2 in the Preparation of MMC Ti Based with TiC Reinforcement[J]. Journal of Alloys and Compounds, 2015, 619: 157-164.

[17] YUAN X Y, LIU G H, JIN H B, et al. In Situ Synthesis of TiC Reinforced Metal Matrix Composite (MMC) Coating by Self Propagating High Temperature Synthesis (SHS)[J]. Journal of Alloys and Compounds, 2011, 509(30): L301-L303.

[18] LIU S, SHIN Y C. The Influences of Melting Degree of TiC Reinforcements on Microstructure and Mechanical Properties of Laser Direct Deposited Ti6Al4V-TiC Composites[J]. Materials & Design, 2017, 136: 185-195.

[19] ZENG Y Z, WANG J D, WEI J Z, et al. Microstructure and Properties of Inter/Inner-layer Regions of TiCp/ Ti6Al4V Composites Manufactured by Laser Melting Deposition[J]. Materials Letters, 2022, 316: 131989.

[20] WANG J D, LI L Q, TAN C W, et al. Microstructure and Tensile Properties of TiCp/Ti6Al4V Titanium Matrix Composites Manufactured by Laser Melting Deposition[J]. Journal of Materials Processing Technology, 2018, 252: 524-536.

[21] LI L Q, WANG J D, LIN P P, et al. Microstructure and Mechanical Properties of Functionally Graded TiCp/ Ti6Al4V Composite Fabricated by Laser Melting Deposition[J]. Ceramics International, 2017, 43(18): 16638- 16651.

[22] BANDYOPADHYAY A, TRAXEL K D. Invited Review Article: Metal-additive Manufacturing-Modeling Strategies for Application-optimized Designs[J]. Additive Manufacturing, 2018, 22: 758-774.

[23] YUAN D, SHAO S Q, GUO C H, et al. Grain Refining of Ti-6Al-4V Alloy Fabricated by Laser and Wire Additive Manufacturing Assisted with Ultrasonic Vibration[J]. Ultrasonics Sonochemistry, 2021, 73: 105472.

[24] TODARO C J, EASTON M A, QIU D, et al. Grain Refinement of Stainless Steel in Ultrasound-assisted Additive Manufacturing[J]. Additive Manufacturing, 2021, 37: 101632.

[25] WU D J, SONG C C, DI T D, et al. Intermetallic Regulation Mechanism of Inconel 718/Ti6Al4V Composite by Novel Follow-up Ultrasonic Assisted Laser Additive Manufacturing[J]. Composites Part B: Engineering, 2022, 235: 109736.

[26] YU C, LIU X, LI Y, et al. Investigations of the Microstructure and Performance of TiCp/Ti6Al4V Composites Prepared by Directed Laser Deposition[J]. International Journal of Mechanical Sciences, 2021, 205: 106595.

[27] LLORCA J. Fatigue of Particle-and Whisker-reinforced Metal-matrix Composites[J]. Progress in Materials Science, 2002, 47(3): 283-353.

[28] SONG H Y, ZHANG J Q, SONG X L, et al. Microstructure and Friction Properties of GNP/Ni-based Superalloy Composite Coating by Laser Melting Deposition[J]. Applied Surface Science, 2021, 541: 148492.

[29] UNGÁR T. Microstructural Parameters from X-ray Diffraction Peak Broadening[J]. Scripta Materialia, 2004, 51(8): 777-781.

[30] MA G Y, LIU X, SONG C C, et al. TiCp Reinforced Ti6Al4V of Follow-up Synchronous Electromagnetic Induction-laser Hybrid Directed Energy Deposition: Microstructure Evolution and Mechanical Properties[J]. Additive Manufacturing, 2022, 59: 103087.

[31] YANG G, MA J J, WANG H P, et al. Studying the Effect of Lubricant on Laser Joining of AA 6111 Panels with the Addition of AA 4047 Filler Wire[J]. Materials & Design, 2017, 116: 176-187.

[32] TANG M, ZHANG L, ZHANG N. Microstructural Evolution, Mechanical and Tribological Properties of TiC/Ti6Al4V Composites with Unique Microstructure Prepared by SLM[J]. Materials Science and Engineering: A, 2021, 814: 141187.

[33] LABORDE J L, HITA A, CALTAGIRONE J P, et al. Fluid Dynamics Phenomena Induced by Power Ultrasounds[J]. Ultrasonics, 2000, 38(1/2/3/4/5/6/7/8): 297-300.

[34] HU Y N, WU S C, GUO Y, et al. Inhibiting Weld Cracking in High-strength Aluminium Alloys[J]. Nature Communications, Nature Publishing Group, 2022, 13(1): 5816.

[35] LIU D, ZHANG S Q, LI A, et al. Microstructure and Tensile Properties of Laser Melting Deposited TiC/TA15 Titanium Matrix Composites[J]. Journal of Alloys and Compounds, 2009, 485(1/2): 156-162.

[36] WANG J D, LI L Q, LIN P P, et al. Effect of TiC Particle Size on the Microstructure and Tensile Properties of TiCp/Ti6Al4V Composites Fabricated by Laser Melting Deposition[J]. Optics & Laser Technology, 2018, 105: 195-206.

Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium Matrix Composite by Direct Laser Deposition

ZHANG Zi-ao, YAN Xin-rui, SONG Chen-chen, MA Guang-yi*, NIU Fang-yong, WU Dong-jiang

(Dalian University of Technology, Liaoning Dalian 116024, China)

The work aims to improve the aggregation of UMT in TiCpreinforced TC4 composite fabricated by direct laser deposition to strengthen the mechanical properties of TMC. 20wt.% and 30wt.% TiCp/TC4 composites were prepared by fixed ultrasonic assisted direct laser deposition. The distribution of UMT was observed by metallographic microscope. The phase composition, diffraction peak intensity and half peak width were analyzed by X-ray diffractometer. The microstructure was analyzed by field emission scanning electron microscope. The element distribution and element content were analyzed by energy dispersive spectrometer of SEM. At the same time, the fracture morphology and primary TiC of tensile samples were observed. The mechanical properties of the samples were tested by microhardness tester and microcomputer controlled electronic universal testing machine. The acoustic flow, cavitation and mechanical effects generated by ultrasound could continuously stir the molten pool, increase the wettability of the molten pool, make the primary TiC melt/dissolve more fully, and improve the aggregation of UMT at the edge of the cladding layer. Under the assistance of ultrasonic energy field, the average microhardness of 20wt.% and 30wt.% TiCp/TC4 composites increased by 8.4% and 12.7% respectively, and the ultimate tensile properties increased by 8.0% and 15.0% respectively. The fixed ultrasonic high-frequency vibration effectively improves the UMT aggregation, makes the distribution of TiCpin the TC4 matrix more uniform, enhances the bonding strength between the cladding layers, and finally improves the mechanical properties of the deposited samples.

direct laser deposition; TiCp/TC4 composites; ultrasonic vibration; UMT aggregation; microstructure; mechanical properties

10.3969/j.issn.1674-6457.2023.011.003

TG174.442;TB34

A

1674-6457(2023)011-0021-10

2023-10-08

2023-10-08

中国高校基本科研业务费资助(DUT21YG116);国家自然科学基金(52175291)

Fundamental Research Funds for the Central University(DUT21YG116);National Natural Science Foundation of China(52175291)

张子傲, 严新锐, 宋晨晨, 等. 超声对直接激光沉积钛基复材中未熔TiC聚集现象的影响[J]. 精密成形工程, 2023, 15(11): 21-30.

ZHANG Zi-ao, YAN Xin-rui, SONG Chen-chen, et al. Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium Matrix Composite by Direct Laser Deposition[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 21-30.

通信作者(Corresponding author)

责任编辑:蒋红晨

猜你喜欢
样件熔池微观
论机车散热器出厂前的预膜处理工艺
浅析天线罩等效样件的电性能测试
一种新的结合面微观接触模型
电弧焊熔池表征与熔透状态映射研究
微观的山水
一种基于频域变换的熔池运动模糊图像恢复算法
MIG焊接熔池形成与凝固过程数值模拟
转炉吹炼后期熔池碳-温变化轨迹对脱磷的影响
汽车覆盖件面品质判定限度样件的制作
微观中国