两类蝶式期权方差和协方差的半参数界

2023-11-04 13:37艾晓辉刘宗昊白瑞杰王茹雪

艾晓辉 刘宗昊 白瑞杰 王茹雪

摘要:本文的目的是在已知随机变量某些矩信息的条件下,给出随机变量函数的方差和相应协方差的半参数界。本文应用对偶原理,给出了美式蝶式期权和欧式蝶式期权的方差的上界估计。运用等价公式,测度变换,找到控制函数,分别给出了单峰分布下欧式看涨期权与美式蝶式期权的协方差的下界估计以及欧式看涨期权与欧式蝶式期权的协方差的上界估计。

关键词:对偶原理;测度变换;单峰分布;半参数界

中图分类号:O211.5文献标志码:A文献标识码

Semiparametric bounds of variance and covariance for two kinds of butterfly options

AI  Xiaohui,LIU  Zonghao,BAI  Ruijie,WANG  Ruxue

(School of Science, Northeast Forestry University,Harbin,Heilongjiang 150040, China)

Abstract: The purpose of the research is to give the semiparametric bounds of the variance and the corresponding covariance of the function of the random variable, when some moment information of the random variable is given. Through the principle of duality the upper bound estimates of the variance of American butterfly options and European butterfly options are given. Using the equivalent formula and measure transformation, we find the control function, and give the lower bound estimation of the covariance of European call option and American butterfly option under unimodal distribution and the upper bound estimation of the covariance of European call option and European butterfly option.

Key words: duality principle;measure transformation;unimodal distribution;semiparametric bounds

近年來期权交易这种经济手段被广泛应用[1],由于在期权市场中期权价格的稳定性是影响交易的一大重要因素,从而研究期权价格的方差的界对于期权交易来说有着很大的参考价值[2-17]。本文将在给定矩条件下研究美式对称蝶式期权及欧式对称蝶式期权方差的界。

随机变量函数方差矩界的研究历史尚短,其中Chernoff(1981)[18]利用Hermite多项式得到了标准正态分布的1个随机变量函数方差的上界,See等[19]在已知期望不等式的基础上得出了数个近来常见的方差不等式,Cacoulos[20]用类似的方法得出了几个不同分布的上界。

2005年Dokov等[21]给出了在底层随机变量前两阶矩给定条件下凸函数期望的一类下界。2006年Asprmont等[22]通过简单的闭式表达式与线性规划计算了欧式篮子看涨期权定价函数的上、下界。2007年Natarajan等[25]在给定随机变量的均值与方差的条件下得到了1个三段线性凸函数的期望值的1个紧的闭式上界。2009年张银龙[23]在已知一阶矩及二阶矩的条件下利用对偶原理得到了任意分布下截尾随机变量小值概率的界。

2010年Sharma等[24]得出了有限宇宙方差的界。2010年刘国庆[4]将对称化与对偶思想结合得出了估计随机变量函数方差界的1种全新的方法,在此基础上罗希[5]给出了欧式看涨期权与欧式缺口期权协方差的半参数界。2011年Pfeiffer等[25]运用1种基于影响函数的方法来计算绝对风险估计值与绝对风险函数的方差。2019年李宗秀[26]对三段线性函数的均值上界进行了探讨。本文主要研究美式对称蝶式期权以及欧式对称蝶式期权的方差界问题,同时我们选取了1类特殊的欧式看涨期权 ,分别研究其与美式对称蝶式期权以及欧式对称蝶式期权之间的协方差的界问题,对2种期权协方差的研究有助于帮助投资者们进行决策。

本文将美式蝶式期权以及欧式蝶式期权分为两部分讨论,但对它们所用的方法是类似的。研究的结果可以应用到经济、金融领域,比较2个随机变量函数的矩,进而比较期权价格的稳定性,有助于投资者清晰化投资方向,优化投资组合,帮助投资者减小风险的同时获得最优化利益。

1 美式蝶式期权方差的半参数界

本节我们将研究美式蝶式期权的方差,在所给出引理1的基础上,通过适当的放缩结合对偶原理,得出了美式蝶式期权方差的估计。首先介绍美式碟式期权的方差。

5 结论

针对美式蝶式期权及欧式蝶式期权,我们借助对偶原理研究了其在给定矩条件下方差的半参数界。同时,结合测度变换研究了单峰条件下2种期权协方差的上、下界问题,最终给出了美式蝶式期权与max(S-K2,0)协方差的下界以及欧式蝶式期权与max(S-K2,0)协方差的上界。研究的结果对经济、金融领域有实际意义,帮助投资者进行决策分析。

參考文献(References)

[1]王中城. 两类截尾奇异期权均值与方差的矩界问题[D]. 哈尔滨:哈尔滨工业大学, 2012.

[2]WEI Z Y, ZHANG X S. A matrix version of Chernoff inequality[J]. Statistics & Probability Letters, 2008, 78(13): 1823-1825.

[3]PROKHOROV Y V, VISKOV O V, KHOKHLOV V I. Binomial analogues of the Chernoff inequality[J]. Theory of Probability & Its Applications, 2002, 46(3): 544-547.

[4]刘国庆. 截尾随机变量均值与方差的半参数界[D]. 哈尔滨:哈尔滨工业大学, 2010.

[5]罗希. 单峰变量函数方差和协方差的半参数界[D]. 哈尔滨:哈尔滨工业大学, 2012.

[6]EDDY A , RIVER C. On Dyukarev′s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials[J]. Linear Algebra and its Applications, 2015, 474: 44-109.

[7]AZOUZI Y, RAMDANE K. Burkholder inequalities in Riesz spaces[J]. Indagationes Mathematicae, 2017, 28(5): 1076-1094.

[8]SHEN A, WU C. Complete q-th moment convergence and its statistical applications[J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemticas, 2020, 114(1): 1-25.

[8]OLTEANU O. Polynomial approximation on unbounded subsets, Markov moment problem and other applications[J]. Mathematics, 2020, 8(10): 1654.

[9]AGAHI H, MESIAR R. Probability inequalities for decomposition integrals[J]. Journal of Computational and Applied Mathematics, 2017, 315: 240-248.

[10]YANG W Z, WANG Y W, HU S H. Some probability inequalities of least-squares estimator in non linear regression model with strong mixing errors[J]. Communications in Statistics:Theory and Methods, 2017, 46(1): 165-175.

[12]GUO Q, YE P. Convergence rate for the moving least-squares learning with dependent sampling[J]. Journal of Inequalities and Applications, 2018, 2018(1): 1-13.

[11]FENG Y Q, WANG M, ZHANG Y Q. CVA for Cliquet options under Heston model[J]. The North American Journal of Economics and Finance, 2019, 48: 272-282.

[12]OGASAWARA H. The multivariate Markov and multiple Chebyshev inequalities[J]. Communications in Statistics:Theory and Methods, 2020, 49(2): 441-453.

[13]CHEN X, HE S M, JIANG B, et al. The discrete moment problem with nonconvex shape constraints[J]. Operations Research, 2021, 69(1): 279-296.

[14]INFUSINO M, KUNA T. The full moment problem on subsets of probabilities and point configurations[J]. Journal of Mathematical Analysis and Applications, 2020, 483(1): 123551.

[15]DIDIO P J, SCHMDGEN K. The multidimensional truncated moment problem: Carathodory numbers[J]. Journal of Mathematical Analysis and Applications, 2018, 461(2): 1606-1638.

[16]LAI S Y, QIU J, TAO Y C. Option-based portfolio risk hedging strategy for gas generator based on mean-variance utility model[J]. Energy Conversion and Economics, 2022, 3(1): 20-30.

[17]HE X J, CHEN W T. A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean[J]. Mathematics and Financial Economics, 2021, 15: 381-396.

[18]CHERNOFF H. A note on an inequality involving the normal distribution[J]. The Annals of Probability, 1981,9: 533-535.

[19]SEE C T, CHEN J. Inequalities on the variances of convex functions of random variables[J]. Journal of inequalities in pure and applied mathematics, 2008, 9(3): 1-5.

[20]CACOULLOS T. On upper and lower bounds for the variance of a function of a random variable[J]. The Annals of Probability, 1982, 10(3): 799-809.

[21]DOKOV S P, MORTON D P. Second-order lower bounds on the expectation of a convex function[J]. Mathematics of Operations Research, 2005, 30(3): 662-677.

[22]D′ASPREMONT A, GHAOUI L E. Static arbitrage bounds on basket option prices[J]. Mathematical programming, 2006, 106(3): 467-489.

[25]NATARAJAN K, ZHOU L Y. A mean-variance bound for a three-piece linear function[J]. Probability in the Engineering and Informational Sciences, 2007, 21(4): 611-621.

[23]张银龙. 截尾变量小偏差概率的矩界[D].哈尔滨:哈尔滨工业大学,2009.

ZHANG Y L. Moment bounds of small deviation for truncated random variabies[D]. Harbin Institute of Technology, 2012.

[24]SHARMA R, GUPTA M, KAPOOR G. Some better bounds on the variance with applications[J]. Journal of Mathematical Inequalities, 2010, 4(3): 355-363.

[25]PFEIFFER R M, PETRACCI E. Variance computations for functionals of absolute risk estimates[J]. Statistics & probability letters, 2011, 81(7): 807-812.

[26]李宗秀. 截尾三段线性函数均值上界的估计[J]. 哈尔滨商业大学学报 (自然科学版), 2019, 35(4):499-502.

LI Z X. Estimates on upper bounds of mean for truncated three-piece linear function[J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2019, 35(4):499-502.

(責任编辑:编辑郭芸婕)

收稿日期:2022-06-20

基金项目:黑龙江省博士后资助项目(LBH-Q21059),东北林业大学2021年度大学生创新创业训练计划项目(202110225124)

作者简介:艾晓辉(1979—), 女,副教授,从事随机过程、随机微分方程、矩问题的研究,e-mail:axh_826@163.com。