司鹏 邵微 徐国益 于会丽 谢宁 杜国强
摘要:【目的】探讨柠檬酸、草酸与氮磷钾肥配施对葡萄产量、果实品质、养分吸收的影响,并筛选出最适低分子质量有机酸与应用浓度,为阳光玫瑰葡萄提质增香专用肥料的研发提供参考。【方法】以施用氮磷钾肥为对照,设置5%与10%的柠檬酸(LC与HC)、草酸(LO与HO)与氮磷钾肥配施为处理,测定葡萄单果质量、产量、品质、养分及香气物质含量等指标。【结果】与对照相比,10%草酸处理葡萄产量显著升高36.18%,硬度显著升高11.94%。5%草酸处理下果实可溶性固形物含量与可溶性糖含量均为最高,分别较对照显著升高18.75%与69.21%;5%柠檬酸、草酸处理果实糖酸比显著升高,10%柠檬酸、草酸处理果实维生素C含量显著升高。草酸处理显著提高了葡萄果实感官肉质风味与综合评价指标。5%草酸处理较对照显著降低了叶片中NPK含量,而10%柠檬酸处理果实NPK含量均有所升高,其中P与K含量较对照显著升高60.42%与24.02%;施用柠檬酸与草酸均增加了葡萄果实香气物质含量,其中10%柠檬酸处理醛类物质含量最低,为61%。
【结论】草酸与氮磷钾配施提升了阳光玫瑰葡萄产量与品质,其中以10%草酸效果最佳。
关键词:葡萄;柠檬酸;草酸;果实品质;产量
中图分类号:S663.1 文献标志码:A 文章编号:1009-9980(2023)08-1606-09
阳光玫瑰葡萄以日本安云津21 号×白南杂交选育而成,颗粒大,果皮黄绿色,肉质鲜脆多汁,具有玫瑰香味,可溶性固形物含量可达20%以上,具有抗病、丰产、优质及耐储运等优点,以其浓郁的麝香风味著称[1-2],市场前景广阔[3]。由于果农不科学施肥,造成土壤板结、土壤生态系统恶化,引发树体营养不良与果实品质的下降,严重制约葡萄产业的优质高效发展[4-7]。因此,如何在保证葡萄产量稳定的前提下,通过科学施肥实现葡萄提质增效是目前葡萄生产中亟待解决的问题。
作为光合作用的直接与间接参与者,草酸与柠檬酸可提高叶片叶绿素含量与净光合速率[8-10]。叶面喷施柠檬酸不仅降低了梨树落果率有助于梨单果质量与产量的增加,亦可降低草莓植株的致病率与致病程度,从而显著提高草莓产量[11-12]。另外,柠檬酸等有机酸含量与土壤氮循环相关,可促进土壤呼吸和增加土壤可溶性有机氮含量,同时提高土壤总氮矿化率与固氮率[13]。同时,作为根际分泌物的一种,两种低分子有机酸均可影响根际微环境与微生物群落以活化土壤中矿质元素,进而促进植物对矿质养分的吸收[14-15]。现已证实,草酸施入土壤可提高刺梨的果实品质与叶片养分含量,而柠檬酸可促进梨养分吸收与果实品质的提升[8,16]。因此,柠檬酸与草酸具有作为果树水溶肥增效剂的潜力,但两酸对葡萄养分吸收与果实品质的作用效果尚未清晰。因此,笔者在本研究中以阳光玫瑰葡萄为试验材料,研究柠檬酸、草酸与氮磷钾配施对葡萄果实产量、品质、养分吸收以及香气物质的影响,筛选柠檬酸与草酸作为增效剂在葡萄生产中与氮磷钾配施的最佳浓度,为葡萄新型肥料的研发及其产业绿色高效发展提供理论与技术支持。
1 材料和方法
1.1 试验地基本情况
试验在河南省新乡市获嘉县亢村镇凯富葡萄农庄(35°09′28″N,113°42′17″E)进行。该地区属于黄河流域,年平均降水量为542.15 mm。
1.2 供试材料
供试土壤:表层土壤pH 为8.9,有机质含量(w,后同)0.26%,有效磷(P)含量32.60 mg·kg-1,速效钾(K)含量113.40 mg· kg-1,氨态氮含量4.30 mg· kg-1,硝态氮含量7.70 mg·kg-1。
供试低分子有机酸:柠檬酸(C6H8O7)与草酸(C2H2O4)的纯度≥98.0%(肥料级)。供试作物:5 年生阳光玫瑰葡萄,株行距1.5 m×3.0 m。
1.3 试验处理
试验设置不同浓度的柠檬酸、草酸与氮磷钾肥配施处理共5 个,详见表1。其中磷钾肥由尿素、硝酸钾及磷酸二氢钾组成,依据葡萄产量设定全年氮(N)144.00 kg · hm- 2,磷(P2O5)68.06 kg · hm- 2,鉀(K2O)147.86 kg·hm-2。按照需肥规律,分别在萌芽期、幼果期、膨大期以及采前20 d 4 个时期施肥。每个时期氮磷钾水溶肥中纯氮磷钾养分(N-P2O5-K2O)施用量占全年施用量的比例分别为40%-15%-15%、30%-40%-15%、20%-30%-40%、10%-15%-30%。依据每次施肥量,将低分子有机酸与氮磷钾肥直接混合称样溶解后用施肥枪施入树冠2/3 深度20 cm处。每个处理设置4 个重复小区,每个小区4 株树,小区之间间隔2 株树,各小区完全随机排列。其他栽培与病虫害等相关田间管理均保持一致。2019 年9 月6 日成熟时,每个处理4 个重复小区,每个小区从阴阳面随机采摘8 穗果与20 枚叶片,并从果穗上中下部位随机选取果粒80 粒,用于测定单粒质量、果实纵横径等指标。果皮去皮后将果肉部分经液氮处理后存于-80 ℃,用于葡萄香气物质的测定。叶片经杀青后与果实一起烘干用于叶片与果实氮磷钾的测定。
1.4 测定项目与方法
1.4.1 单粒质量、单穗质量与产量测定用精度为0.01 g 的电子天平称量单粒质量,用普通电子天平称量单穗质量。产量计算:产量=每小区平均单穗质量×平均单株挂果量×每666.7 m2株数,各指标均为4 次重复。
1.4.2 果实品质指标测定果粒随机果实硬度采用硬度计(GY-1,浙江托普仪器有限公司,中国)测量,使用手持式数字折光仪(PR-101;ATAGO)测量可溶性固形物含量。可溶性糖含量使用蒽酮法测定[17],维生素C含量采用2,6-二氯酚靛酚法测定[18],可滴定酸含量(TA)采用NaOH滴定法测定[19]。果实纵径和横径采用游标卡尺测量,果形指数为纵径与横径的比值。1.4.3 葡萄果实感官评价采用10 分制,组织15 人以上的品鉴小组(每组男女比例为1∶1,年龄分布为24~50 周岁),通过人体视觉、味觉等对各处理葡萄果实进行打分并计算最终得分,打分参照张振文等[20]、刘崇怀等[21]的方法。
1.4.4 叶片与果实NPK 测定采用H2SO4-H2O2消煮[19],全自动间断化学分析仪(Clever Chem 380,德国)测定叶片与果实N含量,采用钼蓝比色法测定叶片与果实P 含量,用原子吸收分光光度计(AASZEEnit 700P,Jena,德国)测定叶片与果实K含量。
1.4.5 果实香气物质的测定仪器与试剂:固相微萃取头65 μm PDMS/DVB(美国Supleco 公司);气相色谱质谱联用仪7890-5975C GC/MS(美国Agilent公司);色谱柱DB-225MS(30.00 m×0.25 mm×0.25 μm)。化学试剂均为色谱纯。
参照前人的方法[3,7,22]提取葡萄果实中的挥发性物质:取葡萄果肉150 g 制成匀浆后,取50 g 果浆6000 r · min- 1 离心15 min 后过滤,取8 mL 上清液60 ℃条件下水浴15 min,加入NaCl 3 g,加盖封口。插入萃取头,105 ℃条件下吸附40 min,950 r ·min-1搅拌。吸附后将萃取头插入气相色谱进样口,250 ℃解吸附萃取头10 min,同时启动仪器采集数据。质谱条件:电离方式EI,电离能量70 eV,离子源温度250 ℃,扫描质量范围为50~550 amu。
1.5 数据分析
采用Microsoft Excel 2007 进行数据处理与作图;用SPSS 17.0 进行单因素方差分析与综合得分分析,以p<0.05 作为显著性的标准。
2 结果与分析
2.1 柠檬酸与草酸处理对葡萄果实单果质量、果形指数、穗质量及产量的影响
柠檬酸与草酸处理下葡萄果形指数、单穗质量及产量,见表2。与对照相比,草酸(LO与HO)处理果形指数无显著差异,而HC处理则显著下降。柠檬酸与草酸处理下葡萄单穗质量无显著差异,其中HO单穗质量最重,显著重于LO。比较各处理葡萄产量可知,两种有机酸处理下葡萄产量均有所升高,其中柠檬酸(LC与HC)与LO较对照无显著差异,而HO较对照显著升高36.18%。
2.2 柠檬酸与草酸处理对葡萄果实品质的影响
柠檬酸与草酸处理下葡萄的果实品质相关指标如表3。与对照相比,LC 与HC处理的葡萄果实的硬度显著降低了19.03%与23.87%,而草酸处理则增加了果实硬度,其中HO 较对照显著升高11.94%。两种有机酸均较对照提升了果实可溶性固形物与可溶性糖含量,其中LO处理下两者含量均为最高,分别较对照显著升高18.75%与69.21%。柠檬酸与草酸处理葡萄果实可滴定酸含量与对照无显著差异,而同一有机酸的低浓度处理均低于高浓度处理,其中HC 处理果实可滴定酸含量显著高于LC 处理。柠檬酸与草酸处理均较对照升高了果实的糖酸比,其中LC 与LO 分别较对照显著升高37.05%与67.37%。与对照相比,高浓度处理显著升高了果实维生素C 含量,其中HC 与HO 显著升高34.39%与38.74%,而LC与LO则与对照无显著差异。柠檬酸与草酸处理下葡萄果实的感官评价列于表4。与对照相比,柠檬酸处理下葡萄外观品质无显著差异,HO显著提高了葡萄果实外观品质,而LO则显著降低。对于果实肉质风味而言,柠檬酸处理(LC与HC)较对照无显著差异,而草酸处理(LO与HO)则较对照显著升高。与对照相比,草酸处理(LO与HO)显著增加了葡萄果实品尝综合评分,其中LO 与HO 分别较对照增加了21.40%与11.53%,而柠檬酸处理(LC与HC)则与对照无显著差异。
2.3 柠檬酸与草酸处理对葡萄养分吸收的影响
柠檬酸与草酸处理下葡萄叶片与果实的养分含量如图1 所示。比较各处理叶片N与P含量可知,柠檬酸处理与对照无显著差异,其中HC 处理叶片N与P 含量均为最高,而LO 则较对照分别显著降低15.52%与22.68%。叶片K含量:柠檬酸与草酸均降低了叶片K含量,其中草酸(LO与HO)处理叶片K含量最低,较對照显著降低30.74%与29.6%。与对照相比,柠檬酸与草酸处理果实N含量均无显著差异。柠檬酸与草酸处理果实P 含量均显著高于对照。HC处理果实N、P、K含量均为最高,其中果实P、K含量较对照显著升高60.42%与24.02%。
2.4 柠檬酸与草酸处理对葡萄香气物质的影响
如表5 可知,葡萄果实中的香气物质的种类主要分为醇、醛、酮、烷烃、烯烃、苯衍生物类等香气物质。柠檬酸与草酸处理下葡萄果实中香气化合物的种类与相对含量存在差异。不同处理间阳光玫瑰葡萄果肉香气化合物中,醛类物质在各处理的相对含量在61%~94%,其中LO最高,HC最低。HC处理醇类相对含量最高为36%,而其他处理仅为1%~4%。柠檬酸与草酸的添加,增加了葡萄果肉中的酯类化合物,其中HO相对含量与种类数最高,分别为2%与9。与对照相比,LC增加了葡萄酮类化合物的相对含量与种类数,而降低烷烃类化合物的相对含量与种类数。比较各处理化合物种类发现,柠檬酸与草酸均增加了葡萄果实香气化合物种类,其中以HC最高,为38 种,其次为HO,数量为37。这表明高浓度柠檬酸与草酸处理增加了葡萄果实中的香气物质的种类。
2.5 柠檬酸与草酸处理对葡萄果实品质与养分吸收的综合分析
为了明确柠檬酸与草酸处理对阳光玫瑰葡萄果实品质与养分吸收的影响,本文中将21 个相关指标用SPSS 进行了主成分分析。4 个主成分的特征值均大于1(表6),前3 个主成分的特征值分别为8.37、6.63 与4.68,而贡献率为39.84%、31.59%及22.30%,4 个主成分累积贡献率为100%,表明分析结果包含了所测指标的全部信息。
如表7 所示,不同浓度柠檬酸与草酸处理对阳光玫瑰葡萄养分与品质的影响不同,其中草酸综合得分均为正值,而柠檬酸处理则均为负值。另外,HC处理得分最低,仅为-1.26,排名低于对照。阳光玫瑰葡萄养分与品质的综合分析表明,草酸处理优于柠檬酸,其中HO优于LO。
3 讨论
3.1 柠檬酸与草酸处理对葡萄果实穗质量与产量的影响
柠檬酸与草酸作为植物光合作用的直接或者間接产物,与植物碳代谢密切相关[23-25]。研究发现,外源柠檬酸和草酸可增强植物的非生物胁迫耐受性,提高叶绿素含量与光合效率,进而促进作物生长与产量的提升[26]。本文结果表明,两者与氮磷钾肥配施均增加了葡萄产量,其中10%草酸显著升高。草酸通过显著提高刺梨坐果率与单果质量,从而显著促进了刺梨产量的增加,其中以10 g·株- 1 效果最佳[16]。邵微等[8]提出5%柠檬酸、草酸与氮磷钾配施均可增加梨的单果质量,显著提高红宝石梨产量。柠檬酸最佳喷施浓度与果树的树种密切相关。0.05%柠檬酸喷施处理下柠檬的单果质量与产量均为最高,瓦伦西亚橙的最适浓度则为0.1%[27],而400 mg· kg-1柠檬酸喷施可显著促进脐橙叶片生长与单株树产量增加[28]。García-Pastor 等[29]发现,叶面喷施草酸可显著增加石榴产量:草酸处理提高了叶片中Rubisco 活化酶、PSⅡ氧气释放复合蛋白等的含量,引发叶片光合速率的升高与果实单果质量的增加。另外,叶面喷施草酸增强了火龙果果实中DPPH 自由基清除力与总抗氧化能力,因而在降低火龙果裂果率的同时促进了产量的增加[30]。
3.2 柠檬酸与草酸处理对葡萄果实品质的影响
柠檬酸与草酸作为构成果实风味与口感的重要有机酸,在果实发育过程中发挥着重要作用[31-33]。笔者在本研究中发现,与对照相比,柠檬酸与草酸处理均增加了葡萄果实可溶性固形物与可溶性糖含量,升高了果实糖酸比,其中以5%柠檬酸与草酸显著升高。与此结果保持一致,5%柠檬酸、草酸与氮磷钾配施有利于红宝石梨果实中的可溶性固形物与可溶性糖含量提高[8]。而花期前后叶面喷施500~1500mg·kg-1柠檬酸亦可显著增加梨果实可溶性固形物与可溶性糖含量[11]。Mandour 等[12]也发现,2 mg·L-1柠檬酸喷施显著提高了两茬草莓果实可溶性固形物含量。另外,El-Al 等[34]在研究柠檬酸在叶面喷施与土壤改良两种方式对甜椒的作用效果时发现,叶面喷施与土施均能提高甜椒中可溶性固形物含量。叶面喷施草酸提高了草莓果实总糖量与糖酸比,同时降低了可滴定酸含量[35]。另外,分析两种有机酸对阳光玫瑰葡萄感官评价的影响时,发现草酸处理显著提升了果实肉质风味与品尝综合评分,但对果实外观品质的影响不一,其中10%草酸显著提升了外观感官评价分值,而5%草酸则显著降低。
阳光玫瑰葡萄属于玫瑰香型葡萄品种,其生理风味品质的权重高于外观基本品质,而风味指标以香味权重赋值最高[36-37]。阳光玫瑰葡萄果实香气化合物主要分为醇类、醛类、酯类、酸类、酮类等,其中醛类为主要芳香物质,作为风味的重要感官评价指标之一,香气物质成分与含量的不同造就果实风味的不同[3,38]。两种有机酸均增加了葡萄果实的芳香物质的种类数,其中10%柠檬酸与氮磷钾配施降低了醛类物质的相对含量。低分子有机酸与果实中挥发性香味物质关系密切,研究发现桃果实储藏期喷施柠檬酸升高了果实中4 种挥发性果味与甜味物质含量[39]。
3.3 柠檬酸与草酸处理对葡萄养分吸收的影响
柠檬酸与草酸可提高土壤养分元素的溶解度,具有较强的螯合力,易与多种金属离子形成复合物进而促进植物对养分元素的吸收[14-15,40]。与对照相比,10%柠檬酸处理显著提高了葡萄果实磷钾含量,而10%的草酸处理则抑制了树体对钾的吸收。而笔者在红宝石梨上的研究则发现,10%柠檬酸显著降低了果实钾含量,而果实磷含量的升高也未达显著水平[8]。另外,10%草酸显著降低了叶片与果实钾含量,与本文研究结果相似[8]。而樊卫国等[16]发现草酸处理下土壤中速效磷含量显著升高,同时刺梨叶片磷含量亦显著增加。草酸处理对果树磷吸收的作用效果不同,是由于低分子有机酸活化根际磷的效率不仅与土壤磷状态、其他有机酸的存在及磷的吸附等土壤因素相关,也与土壤微生物活性、含水量、pH及络合态Ca等的可用性密切相关[41]。
4 结论
5%柠檬酸与草酸(5%和10%)均促进了阳光玫瑰葡萄果实品质的提升,以10%草酸与氮磷钾配施效果最佳,显著提高了葡萄666.7 m2产量、可溶性固形物以及维生素C含量,显著促进了葡萄果实感官评价值的提升。虽然10%柠檬酸与氮磷钾配施显著提升了果实磷钾含量,但其对葡萄果实品质与养分吸收的综合效果较对照差。柠檬酸与草酸处理均增加了葡萄果实香气物质的种类,10%柠檬酸与氮磷钾配施降低了葡萄香气物质中醛类物质的比例。
参考文献References:
[1] 李海燕. 阳光玫瑰葡萄香气物质积累规律及其调控研究[D].杭州:浙江大学,2017.
LI Haiyan. The research of the volatile aroma accumulation andregulation of‘Shine Muscatgrape[D]. Hangzhou:ZhejiangUniversity,2017.
[2] 穆丁郁,韩志瑶,王超霞,王荣,马闯,田淑芬. 保存条件对‘阳光玫瑰葡萄果实挥发性香气成分的影响[J]. 中外葡萄与葡萄酒,2022(5):29-36.
MU Dingyu,HAN Zhiyao,WANG Chaoxia,WANG Rong,MAChuang,TIAN Shufen. Effects of preservation conditions onvolatile aroma components of‘Shine Muscatgrape[J]. Sino-Overseas Grapevine &Wine,2022(5):29-36.
[3] 魏志峰,李秋利,高登涛,刘丽,刘军伟. 不同颜色果袋对‘阳光玫瑰葡萄果实品质及香气物质的影响[J]. 经济林研究,2019,37(4):35-43.
WEI Zhifeng,LI Qiuli,GAO Dengtao,LIU Li,LIU Junwei. Effectsof different colors of fruit bags on berry quality and aromaticcomponents of‘Shine Muscatgrape[J]. Non-Wood ForestResearch,2019,37(4):35-43.
[4] 曹琬迪.‘陽光玫瑰葡萄产业发展现状与对策分析[J]. 热带农业科学,2023,43(5):126-131.
CAO Wandi. Analysis of the current situation and countermeasuresfor the development of the‘Sunshine Rosegrape industry[J]. Chinese Journal of Tropical Agriculture,2023,43(5):126-131.
[5] 谢蜀豫,曹慕明,黄秋凤,李玮,张劲,黄羽,管敬喜,黄竟,黄灿,陈立,谢林君,陈国品. 有机肥、微生物肥与化肥配施对阳光玫瑰葡萄果实品质及香气物质的影响[J]. 西南农业学报,2022,35(1):153-161.
XIE Shuyu,CAO Muming,HUANG Qiufeng,LI Wei,ZHANGJin,HUANG Yu,GUAN Jingxi,HUANG Jing,HUANG Can,CHEN Li,XIE Linjun,CHEN Guopin. Effect of organic fertilizer,microbial fertilizer combined with chemical fertilizer on fruitquality and aroma components in Shine Muscat grape[J]. SouthwestChina Journal of Agricultural Sciences,2022,35(1):153-161.
[6] 朱盼盼,李蕊,王录俊,王金锋,安娟娟,张薇. 肥料对‘阳光玫瑰葡萄果实品质的影响[J]. 中国果菜,2021,41(4):64-67.
ZHU Panpan,LI Rui,WANG Lujun,WANG Jinfeng,AN Juanjuan,ZHANG Wei. Effects of fertilizers on fruit quality of‘Sunshinemuscatgrape[J]. China Fruit & Vegetable,2021,41(4):64-67.
[7] 于会丽,徐变变,徐国益,邵微,乔宪生,司鹏. 海藻提取物与养分配施对葡萄果实品质及养分吸收的影响[J]. 中国土壤与肥料,2021(5):232-238.
YU Huili,XU Bianbian,XU Guoyi,SHAO Wei,QIAO Xiansheng,SI Peng. Effect of seaweed extract combined with nutrientson the quality and nutrient absorption of grape fruit[J]. Soiland Fertilizer Sciences in China,2021(5):232-238.
[8] 邵微,徐国益,于会丽,高登涛,刘远,司鹏. 低分子有机酸水溶肥提升梨叶片光合、养分吸收及果实品质[J]. 果树学报,2022,39(6):992-1003.
SHAO Wei,XU Guoyi,YU Huili,GAO Dengtao,LIU Yuan,SIPeng. Low molecular weight organic acid water-soluble fertilizerimproves leaf photosynthesis,nutrient absorption and fruitquality of pear[J]. Journal of Fruit Science,2022,39(6):992-1003.
[9] CHEN H C,ZHANG S L,WU K J,LI R,HE X R,HE D N,HUANG C,WEI H. The effects of exogenous organic acids onthe growth,photosynthesis and cellular ultrastructure of Salixvariegata Franch. under Cd stress[J]. Ecotoxicology and EnvironmentalSafety,2020,187:109790.
[10] ARSENOV D,?UPUNSKI M,BORI?EV M,NIKOLI? N,PILIPOVICA,ORLOVIC S,KEBERT M,PAJEVIC S. Citric acidas soil amendment in cadmium removal by Salix viminalis L.,alterationson biometric attributes and photosynthesis[J]. InternationalJournal of Phytoremediation,2020,22(1):29-39.
[11] MOSAW F A,ABD EL-MEGEED N A,ALI M M,ABADA HS,ALI H M,SIDDIQUI M H,SAS-PASZT L. Preharvest foliarapplications of citric acid,gibberellic acid and humic acid improvegrowth and fruit quality of‘Le Contepear (Pyrus communisL.)[J]. Horticulturae,2022,8(6):507.
[12] MANDOUR M,METWALY H,ALI A. Effect of foliar spraywith amino acids ,citric acid,some calcium compounds andmono-potassium phosphate on productivity,storability and controllinggray mould of strawberry fruits under sandy soil conditions[J]. Zagazig Journal of Agricultural Research,2019,46(4):985-997.
[13] LIU Y,EVANS S E,FRIESEN M L,TIEMANN L K. Root exudatesshift how N mineralization and N fixation contribute to theplant- available N supply in low fertility soils[J]. Soil Biologyand Biochemistry,2022,165:108541.
[14] 韩振海,沈隽,王倩. 园艺植物根际营养学的研究:文献述评[J].园艺学报,1993,20(2):116-122.
HAN Zhenhai,SHEN Jun,WANG Qian. Studies on rhizospherenutrition of horticultural crops:literature review[J]. Acta HorticulturaeSinica,1993,20(2):116-122.
[15] 许衡,杨和生,徐英,毛志泉,束怀瑞. 果树根际微域环境的研究进展[J]. 山东农业大学学报(自然科学版),2004,35(3):476-480.
XU Heng,YANG Hesheng,XU Ying,MAO Zhiquan,SHUHuairui. Research progress on rhizosphere environment of fruittrees[J]. Journal of Shandong Agricultural University (NaturalScience),2004,35(3):476-480.
[16] 樊卫国,潘学军,陈红,杨婳若,龚芳芳,官纪元,王梦柳,穆瑞.草酸对刺梨立地石灰性土壤及叶片养分和果实产量、品质的影响[J]. 果树学报,2021,38(7):1113-1122.
FAN Weiguo,PAN Xuejun,CHEN Hong,YANG Huaruo,GONG Fangfang,GUAN Jiyuan,WANG Mengliu,MU Rui. Effectsof oxalic acid on the nutrient of calcareous cultivated soiland leaf,fruit yield and quality of Rosa roxburghii Tratt[J]. Journalof Fruit Science,2021,38(7):1113-1122.
[17] 王学奎. 植物生理生化实验原理与技术[M]. 2 版. 北京:高等教育出版社,2006.
WANG Xuekui. Principles and techniques of plant physiologicalbiochemical experiment[M]. 2nd ed. Beijing:Higher EducationPress,2006.
[18] 曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社,2007.
CAO Jiankang,JIANG Weibo,ZHAO Yumei. Physiological and biochemical experiment guidance after fruit and vegetable harvest[M]. Beijing:China Light Industry Press,2007.
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.
LU Rukun. Analytical methods of soil and agricultural chemistry[M]. Beijing:China Agriculture Scientech Press,2000.
[20] 张振文. 葡萄品种学[M]. 西安:西安地图出版社,2000: 30-31.
ZHANG Zhenwen. Ampelography[M]. Xian:Xian Map PublishingHouse,2000: 30-31.
[21] 刘崇怀,沈育杰,陈俊. 葡萄种质资源描述规范和数据标准[M].北京:中国农业出版社,2006:45-46.
LIU Chonghuai,SHEN Yujie,CHEN Jun. Descriptors and datastandard for grape (Vitis L.) [M]. Beijing:China AgriculturePress,2006:45-46.
[22] 羅静,方金豹,谢汉忠,黄玉南,王超,乔成奎,汤文静. 超声波辅助萃取桃果实挥发性物质的效果[J]. 果树学报,2014,31(5):828-835.
LUO Jing,FANG Jinbao,XIE Hanzhong,HUANG Yunan,WANG Chao,QIAO Chengkui,TANG Wenjing. Effect of ultrasonicon the extraction of volatile compounds in peach (Prunuspersica) fruit[J]. Journal of Fruit Science,2014,31(5):828-835.
[23] ARA?JO W L,NUNES- NESI A,NIKOLOSKI Z,SWEETLOVEL J,FERNIE A R. Metabolic control and regulation ofthe tricarboxylic acid cycle in photosynthetic and heterotrophicplant tissues[J]. Plant,Cell & Environment,2012,35(1):1-21.
[24] STUTZ R E,BURRIS R H. Photosynthesis and metabolism oforganic acids in higher plants[J]. Plant Physiology,1951,26(2):226-243.
[25] TAVANT H. Fixation de 14CO2 et absorption de glucose-U-14Cpar des feuilles de Begonia semperflorens Link et Otto. Etudedesconditions de la genese de lacide oxalique[J]. Physiology,1967,5:57-69.
[26] TAHJIB-UL-ARIF M,ZAHAN M I,KARIM M M,IMRAN S,HUNTER C T,ISLAM M S,MIA M A,HANNAN M A,RHAMANM S,HOSSAIN M A,BRESTIC M,SKALICKY M,MURATA Y. Citric acid- mediated abiotic stress tolerance inplants[J]. International Journal of Molecular Sciences,2021,22(13):7235.
[27] G?NERI M,MISIRLI A,YOKAS I. Citric acid treatments onthe vegetative,fruit properties and yield in Interdonat lemon andValencia orange[J]. African Journal of Agricultural Research,2012,7(40):5525-5529.
[28] EL-KHAYAT H M. Yield and fruit quality of Washington Navelorange as influenced by preharvest application of giberellic,citric,ascorbic and salicylic acids[J]. Journal of Agricultural ResearchAdvances,2020,2(2):9-23.
[29] GARC?A- PASTOR M E,GIM?NEZ M J,VALVERDE J M,GUILL?N F,CASTILLO S,MART?NEZ-ROMERO D,SERRANOM,VALERO D,ZAPATA P J. Preharvest application ofoxalic acid improved pomegranate fruit yield,quality,and bioactivecompounds at harvest in a concentration-dependent manner[J]. Agronomy,2020,10(10):1522.
[30] 葉霞,刘潇,高敏,杨秀群,赵治兵,谢国芳. 喷施有机酸和叶面肥对采收期火龙果果实品质的影响[J]. 南方农业学报,2022,53(5):1296-1304.
YE Xia,LIU Xiao,GAO Min,YANG Xiuqun,ZHAO Zhibing,XIE Guofang. Effects of spraying organic acid and foliar fertilizeron fruit quality of pitaya at harvesting period[J]. Journal ofSouthern Agriculture,2022,53(5):1296-1304.
[31] 张素敏,杨巍,王柏松. 5 个露地中晚熟桃品种果实糖酸组分研究[J]. 中国果树,2022(11):59-62.
ZHANG Sumin,YANG Wei,WANG Baisong. Study on sugarand acid components of five mid-late ripening peach cultivars inthe field[J]. China Fruits,2022(11):59-62.
[32] 张军,姚虹. 库尔勒香梨果实发育过程中有机酸代谢规律研究[J]. 中州大学学报,2021,38(2):107-111.
ZHANG Jun,YAO Hong. Study on organic acid metabolism duringfruit development of Korla Fragrant pear[J]. Journal ofZhongzhou University,2021,38(2):107-111.
[33] 尹宝颖,马宏,李中勇,庞锦轩,贾秋蕊,张学英,徐继忠. 设施内外春美桃果实有机酸含量及柠檬酸代谢酶活性差异研究[J].河南农业科学,2020,49(1):103-110.
YIN Baoying,MA Hong,LI Zhongyong,PANG Jinxuan,JIAQiurui,ZHANG Xueying,XU Jizhong. Differences in organicacids contents and citrate acid metabolism enzyme activities inChunmei peach fruit inside and outside the greenhouse[J]. Journalof Henan Agricultural Sciences,2020,49(1):103-110.
[34] EL-AL F S A. Effect of urea and some organic acids on plantgrowth,fruit yield and its quality of sweet pepper (Capsicum annum)[J]. Research Journal of Agriculture and Biological Sciences,2009,5(4):372-379.
[35] ANWAR R,GULL S,NAFEES M,AMIN M,HUSSAIN Z,KHAN A S,MALIK A U. Pre-harvest foliar application of oxalicacid improves strawberry plant growth and fruit quality[J].Journal of Horticultural Science & Technology,2018:35-41.
[36] 秦歡. 川渝地区‘阳光玫瑰果实主要香气成分分析及部分品质与气候因子相关性研究[D]. 重庆:西南大学,2019.
QIN Huan. The main aroma components analysis and the relevancebetween some quality and climatic factors of‘Shine MuscatinSichuan & Chongqing region[D]. Chongqing:SouthwestUniversity,2019.
[37] 沈甜,牛锐敏,陈卫平,许泽华,黄小晶. 应用层次-关联度和聚类分析法评价十八个鲜食葡萄品质[J]. 北方园艺,2017(23):64-72.
SHEN Tian,NIU Ruimin,CHEN Weiping,XU Zehua,HUANGXiaojing. Quality assessment of eighteen table grapes by usinghierarchy-relation and cluster analysis[J]. Northern Horticulture,2017(23):64-72.
[38] SONG J,FORNEY C F. Flavour volatile production and regulationin fruit[J]. Canadian Journal of Plant Science,2008,88(3):537-550.
[39] YANG C,CHEN T,SHEN B R,SUN S X,SONG H Y,CHEND,XI W P. Citric acid treatment reduces decay and maintainsthe postharvest quality of peach (Prunus persica L.) fruit[J].Food Science & Nutrition,2019,7(11):3635-3643.
[40] JONES D L,DENNIS P G,OWEN A G,VAN HEES PAW. Organicacid behavior in soils - misconceptions and knowledgegaps[J]. Plant and Soil,2003,248(1/2):31-41.
[41] PALOMO L,CLAASSEN N,JONES D L. Differential mobilizationof P in the maize rhizosphere by citric acid and potassiumcitrate[J]. Soil Biology and Biochemistry,2006,38(4):683-692.