殷梦婷 代红军 贺琰 汪月宁 郭学良 刘妍 王振平
摘要:【目的】探明水分胁迫对马瑟兰葡萄果实挥发性风味物质的影响。【方法】以5年生马瑟兰葡萄为试材,根据黎明前叶片水势设置三个水分处理:对照为无胁迫、轻度胁迫(T1)和中度胁迫(T2),通过控制灌水量使植株维持在目标范围内。分别测定各处理葡萄果实挥发性有机化合物及其相关基因表达等指标。【结果】在马瑟兰葡萄成熟期,对照、轻度和中度水分胁迫分别检测出挥发性有机化合物41、45和36种;轻度胁迫(T1)可显著提高果实挥发性物质种类,分别较对照和中度胁迫(T2)提高了9.7%和25.0%。与对照相比水分胁迫下更有利于葡萄果实中VvCCD1 的表达,但不利于VvGPPS和VvHPLA的表达。
【结论】适度的水分胁迫可以促进果实中挥发性有机化合物种类和含量的增加。
关键词:葡萄;水分胁迫;挥发性化合物;基因表达
中图分类号:S663.1 文献标志码:A 文章编号:1009-9980(2023)08-1592-14
水分是限制农业生产的重要因素之一[1],我国酿酒葡萄栽培区主要集中在西北干旱半干旱地区,大量研究表明水分胁迫会导致植物在形态和生理生化方面发生差异性变化[2-4]。如在一定水分胁迫下可以有效地限制葡萄枝叶徒长[5]、提高果实品质[6- 8]等。果实品质不仅包括果实在生长和成熟过程中颜色、风味和质地的变化[9-10],也包括果实释放出来的挥发性有机物质[11-12];香气是葡萄果实品质之一,其种类、含量和感官阈值决定了葡萄品种香气的典型性[13-14]。适度的水分胁迫对葡萄的挥发性物质有影响,且对不同种类的香气产生不同的影响。Brillnate等[15]的研究显示‘西拉葡萄进行70%水分灌溉降低了浆果的质量,从而导致果树两年的产量和作物负载量降低,但是70%水分灌溉使果实的花青素、丹宁和总酚含量增加,果实香气(萜烯类化合物、β-大马酮和降碳倍半萜及其衍生物)的含量提高。70%水分胁迫处理可能有助于改善浆果果皮和葡萄酒酚类物质,并在实现高产的同时减少葡萄酒中的甲氧基吡嗪(IBMP)。Ju 等[16]对葡萄进行代谢分析的结果表明,浆果在水分胁迫后(E)-2-己醛和3-己醛含量显著升高。通过多元统计分析,结果表明葡萄果实中脯氨酸、过氧化氢酶、丙二醛和超氧化物歧化酶与青叶醛和3-己烯醛的含量相关性较强。因此,水分胁迫可以与活性氧自由基清除系统协同作用,调节浆果挥发物的积累,尤其是(E)-2-己醛和3-己醛。这些化合物将用作信号化合物,以对抗水分胁迫对葡萄藤的影响。葡萄潜在香气在轻度水分胁迫和中度氮供应状态下含量最高,重度水分胁迫和缺氮会减弱葡萄香气[17]。
葡萄香气合成具有多种途径,萜烯类合成途径是合成葡萄果实中挥发性有机化合物的主要途径,萜类化合物以游离态化合物和糖苷结合态化合物的形式存在,是葡萄浆果和葡萄酒香气中最重要的芳香化合物的来源[18]。研究表明,异戊二烯类化合物及其衍生物是果实中重要的一类挥发性化合物,这类化合物是类胡萝卜素在类胡萝卜裂解双加氧酶(CCDs)作用下氧化分解而成[19],Zhang 等[20]研究发现,在果实成熟过程中,类胡萝卜素类香气挥发性化合物含量增加,尤其是β-紫罗兰酮含量显著增加,并鉴定出可能参与这些化合物生物合成的CCD1 基因。单萜合成代谢途径中期的关键基因是香叶基二磷酸合成酶基因(VvGPPS),GPPS 基因表达量上调,对响应合成单萜物质有促进作用[21]。植物脂氢过氧化物裂解酶(hydropenoxide lyase,HPL)作为植物不饱和脂肪酸氧化途径中的关键酶,与植物的特有香气、抗逆反应及信号传导和老化等生理过程有关,醛类进而氧化生成酸或经醇脱氢酶(ADH)作用生成醇,最后在醇酰基转移酶(AAT)催化下生成酯类[22-23]。马瑟兰(Marselan)是赤霞珠(Cabernet Sauvignon)和黑歌海娜(Grenache Noir)的杂交品种。经过杂交选出的马瑟兰既具有歌海娜的耐热性又兼备赤霞珠的细致感[24-25],用马瑟兰酿制的干红葡萄酒品质优良,酒色紫黑不透光,香气浓郁,单宁含量高,适合长期陈酿[26]。目前,国内外对赤霞珠葡萄果實的香气组分研究的报道较多,而对马瑟兰葡萄的香气组分研究较少。本试验中以马瑟兰葡萄为试材,探究不同水分胁迫程度对马瑟兰葡萄果实中挥发性有机化合物及其相关基因的变化,以期为马瑟兰葡萄栽培中的水分利用提供理论依据。
1 材料和方法
1.1 试验设计
试验在宁夏农垦集团玉泉营农场国家葡萄产业技术体系水分生理与节水栽培岗位试验基地(38.28°N,106.24°E)进行,供试材料为5 年生马瑟兰葡萄,东西行向,株行距0.6 m ×3 m,采用倾斜独龙蔓整形。水分胁迫从花后50 d 至采收期进行,采用滴灌方式灌溉,每个处理均装有控水阀门,通过不同灌水量使各处理黎明前叶片基础水势值达到各胁迫参考范围,实现轻度、中度水分胁迫,以无水分胁迫作为对照,设置3 个处理。对照浇灌时长12 h,轻度胁迫浇灌时长4 h,中度胁迫浇灌时长2 h。每3 d 测量1 次水势,通过控制灌水量使植株维持在目标范围内。试验从水分胁迫开始每10 d 采样一次,每次取样部位为阴、阳两面及上中下,每个处理随机采取100 粒果实,立刻用液氮速冻,用塑封袋装好放在-80 ℃的冰箱中保存待测(表1)。
1.2 黎明前叶片水势测定
于黎明前分别摘取各处理葡萄植株新梢中部健康的功能叶,每个处理随机选取3 株葡萄,每株葡萄随机采3 枚叶片。立即利用水势压力室(美国SoilMoisture Equipment 公司)测定叶片的水势值,并读数记录。
1.3 葡萄果实挥发性有机化合物的测定
采用顶空固相微萃取(HS-SPME)结合气质联用(GC-MS)方法。游离态香气的提取。在离心管加入破碎成粉末的果实样品15 g,加入1 g 交联聚乙烯基吡咯烷酮(PVPP)和0.5 gD-葡萄糖酸内酯。将离心管置于4 ℃冰箱浸提120 min。然后4 ℃、10 000 r ·min-1离心15 min,得到澄清葡萄汁。
顶空固相微萃取(HS-SPME)。取葡萄汁5 mL于15 mL 顶空瓶中,加入1 g 氯化钠、5 μL 内标物2-辛醇和磁力转子后迅速拧紧瓶盖,将萃取头插入样品顶空瓶,置于磁力搅拌器于60 ℃吸附40 min。吸附后将萃取头取出插入气相色谱进样口,于250 ℃解析5 min。
气相色谱分离条件。色谱柱:HP-INNO-Wax 毛细管柱(长30 m,内径0.25 mm,液膜厚度0.25 μm),载气He(99.99%),流速1.0 mL·min-1;进样口温度:250 ℃,解析5 min;程序升温为50 ℃ 下1 min 后,以3 ℃· min-1的速度升温到220 ℃并保持5 min;质谱接口温度为280 ℃,离子源温度为230 ℃,电离的方式为EI,电离能是70 eV,扫描范围为30~350 amu。定性分析与定量分析。利用质谱全离子扫描模式下的总离子流图谱,对采集的总离子图流用NIST08 和RTLPEST3 两个谱库检索及资料分析,结合保留指数(Retention Index,RI)和参考文献确定挥发性香气组分。采用内标法相对定量,以2-辛醇作为内标来确定相对含量,计算公式为香气组分的相对含量(w)(μg · kg- 1)=[各组分的峰面积/内标峰面积×内标质量(μg)]/样品质量(kg)。
1.4 总RNA提取及荧光定量PCR
用RNA提取试剂盒(离心柱型)提取葡萄果实(不含种子)RNA。利用TranScript 试剂盒反转录合成cDNA。以Actin 为内参基因进行荧光定量PCR,在GeneBank 中,查找VvGPPS、VvHPLA 和VvCCD1的特异性序列,由上海生工进行引物设计和合成。引物序列如表2所示。采用2-ΔΔCt法进行相对定量分析。
1.5 数据分析
试验数据采用Microsoft office excel 2010、Origin2018和SPSS Statistics 23.0 进行绘图分析。
2 结果与分析
2.1 水分胁迫对马瑟兰葡萄果实挥发性化合物的影响
2.1.1 水分胁迫对马瑟兰葡萄果实挥发性化合物种类数量的影响马瑟兰葡萄成熟期时对照、轻度胁迫和中度胁迫分别检测出挥发性有机化合物41、45和36种,如表3 所示,轻度胁迫可显著增加果实挥发性物质种类,分别较对照和中度胁迫增加了9.7%和25.0%,中度胁迫和对照相比较,中度胁迫处理使果实内挥发性化合物种类和数量均减少,较对照减少了13.8%。表4 所示证明轻度水分胁迫下马瑟兰葡萄果实内醇类和醛类挥发性物质的含量均较对照有所提高,而中度胁迫下各类挥发性物质含量较对照均降低。
2.1.2 水分脅迫对马瑟兰葡萄发育过程中主要的醇类和酯类化合物含量的影响醇类为马瑟兰葡萄果实香气贡献很大,本次试验检测出12 种醇类。如表5 所示,主要的醇类含量随着葡萄果实的发育而上升。例如正己醇是一种具有水果香气的醇类化合物,在三种胁迫处理下正己醇均能被检测出来,与对照和中度胁迫处理相比轻度胁迫处理所检测出来的正己醇含量最高,花后120 d,轻度水分胁迫果实中正己醇的含量较对照和中度水分胁迫分别高出54.7%和60.9%。图1 显示正己醇、芳樟醇、α-松油醇、苯甲醇及正壬醇随着果实发育其相对含量增加;且轻度胁迫处理下含量最高。而十二醇、2-乙基己醇和1-辛烯-3-醇其相对含量随果实发育而降低。由此可得出适度的水分胁迫(T1)可以提高香气物质的相对含量。
酯类挥发性化合物在葡萄的品种香气中不是很突出,一般在经酵母发酵后的葡萄酒中表现出种类和含量很高。酯类的相对含量较低,本次试验中共检测出9 种酯类。其中癸酸乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二乙酯和丙位庚内酯是马瑟兰葡萄果实中主要的酯类挥发性物质。在表5 中可以发现,花后77 d 具有椰子香气和麦芽气味的丙位庚内酯不能被检测出来,而具有芳香气味的邻苯二甲酸二乙酯在花后110 d 才能被检测出。
2.1.3 水分胁迫对马瑟兰葡萄发育过程中主要的醛类和酮类化合物含量的影响本次试验共检测出醛类12种,如表6 所示,主要醛类挥发性物质随着马瑟兰葡萄果实的发育其相对含量升高。正己醛具有青草和苹果的香气,在整个发育过程中均能被检出,且其相对含量是醛类挥发物中最高的。2-己烯醛具有浓郁新鲜水果的香气,在7 个时期中均能被检测出,且与对照相比轻度水分胁迫下2-己烯醛的相对含量最高,而中度水分胁迫2-己烯醛的相对含量降低。花后120 d,2-己烯醛的相对含量在轻度水分胁迫下较对照提高了40.3%;在中度水分胁迫下较对照降低了43.4%。由此得出,轻度水分胁迫促进2-己烯醛含量的升高,但中度水分胁迫降低其含量。部分醛类物质在果实发育前期未能被检出,但在果实发育后期能被检出,如山梨醛在花后87 d 后才能被检测出。
如图2 所示,2-甲基苯甲醛、反式-2,4-庚二烯醛和2,5-二甲基苯甲醛在果实发育前期各水分胁迫下均可被检出,但在果实成熟期其相对含量极低。但正己醛、苯甲醛、5-羟甲基糠醛、山梨醛及正壬醛的相对含量随果实发育而增加,呈上升趋势。酮类挥发性物质共检测出10 种,大马士酮有强烈的玫瑰花香气,在7 个时期中均存在,随果实的发育其相对含量也随之增加。花后120 d,轻度和中度水分胁迫下大马士酮的含量均低于对照。说明水分胁迫不利于大马士酮物质的积累。
2.1.4 水分胁迫对马瑟兰葡萄发育过程中主要的酸类、酚类及其他类化合物含量的影响共检测出12种酸类挥发性物质,正壬酸具有令人不愉快的刺激气味,随着果实发育其含量呈上升趋势,花后110 d,轻度和中度水分胁迫下正壬酸的含量均比对照高40.0%和51.4%,表明水分胁迫会加剧正壬酸带来的劣质香气;表中还显示,在马瑟兰果实发育前期能被检测出来的酸类挥发性物质很少,到果实发育后期酸类挥发性物质种类增加(表7)。酚类物质中2,4-二叔丁基酚的相对含量最高,且在葡萄果实的全发育阶段均能被检测出来。其他类化合物中包括含氮化合物和其他烃类化合物,其中四甲基琥珀腈和2,1,3-苯并噻二唑含量最高(表7)。
2.2 水分胁迫对马瑟兰葡萄果实挥发性化合物合成相关基因的影响
香叶基二磷酸合成酶基因(VvGPPS)为单萜合成代谢途径中期的关键基因,如图3 所示,VvGPPS表达量随着马瑟兰葡萄果实的发育呈现先下降随后上升的趋势,花后87 d 前,T2 处理下VvGPPS 表达量显著高于对照和T1;成熟期时,对照处理下VvGPPS 表达量高于T1 和T2。表明水分胁迫会降低该基因的表达量。
如图4 所示,在马瑟兰葡萄果实整个发育过程中,各处理下VvHPLA表达量呈下降趋势,但是花后87 d 时T1 的VvHPLA 表达量最高。花后67~120 d对照的相对表达量均处于较低水平,T1 和T2 的表达量高于对照。说明水分胁迫可以促进VvHPLA表达量升高,但是总体来说成熟期的表达量降低。如图5 所示,在马瑟兰葡萄果实发育过程中,VvCCD1 表达量呈现出下降趋势,但中度水分胁迫处理(T2)的葡萄果实VvCCD1 表达量始终高于对照组,花后87 d 观察到轻度水胁迫处理(T1)的VvCCD1 表达量显著高于对照组和中度水分胁迫。
结果表明,水分胁迫处理可以有效提高马瑟兰葡萄果实VvCCD1 的表达量。
3 讨论
环境因素通过影响植物基因的表达及植物体内的生理生化反应,进而调控植物的生长和次生代谢产物的变化[26-27]。水分是一切生物维持生命活动不可或缺的因素,水分匮乏已成为影响经济植物生长及产量形成的决定性环境因素[28-29]。水分不足会损害葡萄生长,降低产量,水分严重不足时会影响葡萄和葡萄酒的质量[30]。
据报道,调亏灌溉可以提高葡萄的水分利用率和抑制葡萄的营养生长,这可能会影响果实的生长和品质,特别是多酚和香气[30]。本研究中轻度水分胁迫的香气总量显著高于其他两个处理;成熟期时马瑟兰葡萄果实内醛类挥发性化合物的含量高于其他种类。本研究表明,轻度水分胁迫下马瑟兰葡萄果实内醇类和醛类挥发性物质的含量均较对照有所提高,而中度胁迫下各类挥发性物质含量较对照均降低。果实成熟过程中大多数萜醇类物质含量呈上升趋势[31]。本研究显示正己醇和芳樟醇是马瑟兰葡萄果实发育过程中含量最高的两种萜醇类化合物,二者分别具有水果和玫瑰的香气。其中正己醇的含量随水分胁迫程度的增高而增加,由此表明,水分脅迫可以提高马瑟兰葡萄果实内正己醇的含量。大马士酮是马瑟兰葡萄果实中含量最高的酮类物质,与对照相比,轻度和中度胁迫处理的果实中大马士酮含量分别降低了27.3%和43.7%,说明水分胁迫不利于大马士酮在马瑟兰葡萄果实中的积累。综上,为提高酿酒葡萄果实品质,可在实际生产中应用节水灌溉如滴灌等措施。
香叶基二磷酸合成酶基因(VvGPPS)为单萜合成代谢途径中期的关键基因[20],本研究中马瑟兰葡萄果实中的VvGPPS 表达量随果实成熟表现出先下降后上升的趋势,且水分胁迫使VvGPPS 表达量下调。表明水分胁迫不利于VvGPPS 的表达。研究表明异戊二烯类化合物及其衍生物是果实中一类重要的挥发性化合物,这些挥发性化合物是类胡萝卜素在类胡萝卜裂解双加氧酶(CCDs)作用下氧化分解而成的[18],这些类胡萝卜素衍生物的C13-降异戊二烯化合物在许多植物的花、果实和叶片中存在且具有不同的生物学作用[32]。本研究显示,整体VvCCD1 表达量呈现出下降趋势且水分胁迫下VvCCD1 表达量显著高于对照。植物脂氢过氧化物裂解酶(HPL)作为植物不饱和脂肪酸氧化途径中的关键酶,与植物的特有香气、抗逆反应及信号传导和老化等生理过程有关[33-34];本研究HPLA基因表达前期,轻度和中度胁迫处理下表达量呈上升趋势,而对照逐渐下降,花后120 d,轻度胁迫表达量最高,水分胁迫可以促进HPLA基因表达量的升高;与花后52 d相比,其表达量降低。
4 结论
综上所述,适度的水分胁迫可显著增加马瑟兰葡萄果实中挥发性有机化合物的种类和相对含量。与对照相比水分胁迫不利于VvGPPS 和VvHPLA 的表达,但有利于VvCCD1 的表达。
参考文献References:
[1] CHAVES M M,ZARROUK O,FRANCISCO R,COSTA J M,SANTOS T,REGALADO A P,RODRIGUES M L,LOPES CM. Grapevine under deficit irrigation:hints from physiologicaland molecular data[J]. Annals of Botany,2010,105(5):661-676.
[2] 李茜,刘松涛. 果树调亏灌溉技术研究动态及其应用[J]. 节水灌溉,2016(10):113-116.
LI Qian,LIU Songtao. Research trends and application of regulateddeficit irrigation technology for fruit trees[J]. Water SavingIrrigation,2016(10):113-116.
[3] CHAVES M M,FLEXAS J,PINHEIRO C. Photosynthesis underdrought and salt stress:regulation mechanisms from wholeplant to cell[J]. Annals of Botany,2009,103(4):551-560.
[4] CRAMER G R,ERG?L A,GRIMPLET J,TILLETT R L,TATTERSALLE A R,BOHLMAN M C,VINCENT D,SONDEREGGERJ,EVANS J,OSBORNE C,QUILICI D,SCHLAUCH K A,SCHOOLEY D A,CUSHMAN J C. Waterand salinity stress in grapevines:Early and late changes in transcriptand metabolite profiles[J]. Functional & Integrative Genomics,2007,7(2):111-134.
[5] 段素梅,楊安中,黄义德,吴文革,许有尊,陈刚. 干旱胁迫对水稻生长、生理特性和产量的影响[J]. 核农学报,2014,28(6):1124-1132.
DUAN Sumei,YANG Anzhong,HUANG Yide,WU Wenge,XU Youzun,CHEN Gang. Effects of drought stress on growthand physiological feature and yield of various rice varieties[J].Journal of Nuclear Agricultural Sciences,2014,28(6):1124-1132.
[6] YUAN J H,DAI Z W,ZHAO J Y,LI S H. Distribution of newlyfixed 14C-photoassimilate under deficit irrigation and half-rootstress in peach trees[J]. Plant Science,2009,177(6):691-697.
[7] SANTESTEBAN L G,MIRANDA C,ROYO J B. Regulateddeficit irrigation effects on growth,yield,grape quality and individualanthocyanin composition inVitis vinifera L. cv.‘Tempranillo[J]. Agricultural Water Management,2011,98(7):1171-1179.
[8] LIU G T,CHAI F M,WANG Y,JIANG J Z,DUAN W,WANGY T,WANG F F,LI S H,WANG L J. Genome-wide identificationand classification of HSF family in grape,and their transcriptionalanalysis under heat acclimation and heat stress[J].Horticultural Plant Journal,2018,4(4):133-143.
[9] 席奔,柳巧禛,吕丹桂,徐伟荣,王振平,代红军. 水分胁迫对葡萄果实白藜芦醇合成相关基因表达的影响[J]. 核农学报,2019,33(8):1490-1500.
XI Ben,LIU Qiaozhen,L? Dangui,XU Weirong,WANG Zhenping,DAI Hongjun. Effects of water stress on expression ofgenes related to resveratrol biosynthesis in grape berries[J]. Journalof Nuclear Agricultural Sciences,2019,33(8):1490-1500.
[10] 杨昌钰,张芮,蔺宝军,王腾飞,王春宏. 水分胁迫对鲜食葡萄果实品质影响的研究进展[J]. 农业工程,2020,10(1):86-91.
YANG Changyu,ZHANG Rui,LIN Baojun,WANG Tengfei,WANG Chunhong. Review of effects of water stress on fruitquality of table grapes[J]. Agricultural Engineering,2020,10(1):86-91.
[11] 陈祖民,校诺娅,张艳霞,史晓敏,郭帅奇,高虎,王振平. 水分胁迫对‘玫瑰香葡萄果实挥发性化合物及相关基因表达的影响[J]. 园艺学报,2021,48(5):883-896.
CHEN Zumin,XIAO Nuoya,ZHANG Yanxia,SHI Xiaomin,GUO Shuaiqi,GAO Hu,WANG Zhenping. Effects of waterstress on the volatile compounds and related biosynthetic genesexpression in‘Muscat Hamburggrape berries[J]. Acta HorticulturaeSinica,2021,48(5):883-896.
[12] OGUNDIWIN E A,PEACE C P,GRADZIEL T M,PARFITT DE,BLISS F A,CRISOSTO C H. A fruit quality gene map ofPrunus[J]. BMC Genomics,2009,10:587.
[13] 校诺娅. 水分胁迫对‘玫瑰香葡萄果实挥发性化合物及相关基因表达的影响[D]. 银川:宁夏大学,2020.
XIAO Nuoya. Effect of water stress on volatile compounds andexpression of related genes fruiting branches in Muscat Hamburggrape[D]. Yinchuan:Ningxia University,2020.
[14] 陶永胜,刘吉彬,兰圆圆,陈超奇,李爱华. 人工贵腐葡萄酒香气的仪器分析与感官评价[J]. 农业机械学报,2016,47(2):270-279.
TAO Yongsheng,LIU Jibin,LAN Yuanyuan,CHEN Chaoqi,LIAihua. Instrumental and sensory aroma analysis of noble- rotwine from artificial botrytized grapes[J]. Transactions of the ChineseSociety for Agricultural Machinery,2016,47(2):270-279.
[15] BRILLANTE L,MART?NEZ-L?SCHER J,KURTURAL S K.Applied water and mechanical canopy management affect berryand wine phenolic and aroma composition of grapevine (Vitis viniferaL.,cv. Syrah) in Central California[J]. Scientia Horticulturae,2018,227:261-271.
[16] JU Y L,YUE X F,ZHAO X F,ZHAO H,FANG Y L. Physiological,micro- morphological and metabolomic analysis of grape- vine (Vitis vinifera L.) leaf of plants under water stress[J]. PlantPhysiology and Biochemistry,2018,130:501-510.
[17] DELUC L G,QUILICI D R,DECENDIT A,GRIMPLET J,WHEATLEY M D,SCHLAUCH K A,M?RILLON J M,CUSHMAN J C,CRAMER G R. Water deficit alters differentiallymetabolic pathways affecting important flavor and qualitytraits in grape berries of Cabernet Sauvignon and Chardonnay[J]. BMC Genomics,2009,10(1):212.
[18] DEGENHARDT J,K?LLNER T G,GERSHENZON J. Monoterpeneand sesquiterpene synthases and the origin of terpeneskeletal diversity in plants[J]. Phytochemistry,2009,70(15/16):1621-1637.
[19] LASHBROOKE J G,YOUNG P R,DOCKRALL S J,VASANTHK,VIVIER M A. Functional characterisation of threemembers of theVitis vinifera L. carotenoid cleavage dioxygenasegene family[J]. BMC Plant Biology,2013,13(1):156.
[20] ZHANG Q Y,FENG C,LI W H,QU Z H,ZENG M,XI W P.Transcriptional regulatory networks controlling taste and aromaquality of apricot (Prunus armeniaca L.) fruit during ripening[J].BMC Genomics,2019,20(1):45.
[21] 王繼源,冯娇,侯旭东,陶建敏. CPPU 对‘阳光玫瑰葡萄品质及香气合成相关基因表达的影响[J]. 南京农业大学学报,2016,39(6):915-923.
WANG Jiyuan,FENG Jiao,HOU Xudong,TAO Jianmin. Effectsof CPPU on aroma components and biosynthetic genes expressionin‘Shine Muscatgrapes[J]. Journal of Nanjing AgriculturalUniversity,2016,39(6):915-923.
[22] 周建梅. 鲜食葡萄香气物质的组成和代谢调控[D]. 泰安:山东农业大学,2013.
ZHOU Jianmei. Analysis on the constituents and metabolic regulationsof aroma in table grapes[D]. Taian:Shandong AgriculturalUniversity,2013.
[23] 宋丽娟,李雄伟,陈琳,柴明良,高中山. 果实香气合成与遗传控制研究概述[J]. 果树学报,2008,25(5):708-713.
SONG Lijuan,LI Xiongwei,CHEN Lin,CHAI Mingliang,GAO Zhongshan. A review on fruit aroma synthesis and its geneticcontrol[J]. Journal of Fruit Science,2008,25(5):708-713.
[24] 赵德升,吴玉文,段长青. 河北怀来地区马瑟兰葡萄果实品种香气组成分析[J]. 中外葡萄与葡萄酒,2010(9):8-12.
ZHAO Desheng,WU Yuwen,DUAN Changqing. Analysis ofvarietal aroma of Marselan grapes originated from Huailai areaof Hebei Province[J]. Sino- Overseas Grapevine & Wine,2010(9):8-12.
[25] 齐晓琴,刘建花,李金鹏,张惠玲. 贺兰山东麓马瑟兰干红葡萄酒香气成分的分析[J]. 中国酿造,2016,35(9):163-167.
QI Xiaoqin,LIU Jianhua,LI Jinpeng,ZHANG Huiling. Analysisof aroma components of Marselan dry red wine from HelanMountain Eastern[J]. China Brewing,2016,35(9):163-167.
[26] 赵胜建,郭紫娟,马爱红,刘长江,袁军伟,韩斌. 酿酒葡萄新品种“马瑟兰”引种栽培及酿酒特性简介[J]. 中外葡萄与葡萄酒,2012(3):38-40.
ZHAO Shengjian,GUO Zijuan,MA Aihong,LIU Changjiang,YUAN Junwei,HAN Bin. Introduction,cultivation and winemakingcharacteristics of a new grape variety Marselan[J]. Sino-Overseas Grapevine &Wine,2012(3):38-40.
[27] 胡國强,陈顺钦,袁媛,伍翀,林淑芳. 外源生长素对黄芩悬浮细胞有效成分和内源激素含量的影响[J]. 中国实验方剂学杂志,2011,17(17):127-130.
HU Guoqiang,CHEN Shunqin,YUAN Yuan,WU Chong,LINShufang. Effects of external auxin on effective components andendogenous hormones contents inScutellaria baicalensis suspensioncell[J]. Chinese Journal of Experimental TraditionalMedical Formulae,2011,17(17):127-130.
[28] 胡国强,张学文,李旻辉,宋国虎,袁媛,林淑芳,吴志刚. 植物生长调节剂缩节胺对黄芩活性成分含量的影响[J]. 中国中药杂志,2012,37(21):3215-3218.
HU Guoqiang,ZHANG Xuewen,LI Minhui,SONG Guohu,YUAN Yuan,LIN Shufang,WU Zhigang. Effects of plantgrowth regulator mepiquat chloride on content of active compoundsinScutellaria baicalensis[J]. China Journal of ChineseMateria Medica,2012,37(21):3215-3218.
[29] 单长卷,韩蕊莲,梁宗锁. 干旱胁迫下黄土高原4 种乡土禾草抗氧化特性[J]. 生态学报,2012,32(4):170-180.
SHAN Changjuan,HAN Ruilian,LIANG Zongsuo. Antioxidantproperties of four native grasses in Loess Plateau under droughtstress[J]. Acta Ecologica Sinica,2012,32(4):170-180.
[30] 刘静霞,张芮,成自勇,李敏,陈娜娜,马奇梅,戴文渊. 不同生育期水分亏缺对酿酒葡萄产量及品质的效应研究[J]. 干旱地区农业研究,2016,34(3):78-83.
LIU Jingxia,ZHANG Rui,CHENG Ziyong,LI Min,CHENNana,MA Qimei,DAI Wenyuan. Effect research of water deficitin different growth stage on wine grape yield and quality[J].Agricultural Research in the Arid Areas,2016,34(3):78-83.
[31] 房玉林,孙伟,万力,惠竹梅,刘旭,张振文. 调亏灌溉对酿酒葡萄生长及果实品质的影响[J]. 中国农业科学,2013,46(13):2730-2738.
FANG Yulin,SUN Wei,WAN Li,XI Zhumei,LIU Xu,ZHANGZhenwen. Effects of regulated deficit irrigation (RDI) on winegrape growth and fruit quality[J]. Scientia Agricultura Sinica,2013,46(13):2730-2738.
[32] 王慧玲,王晓玥,闫爱玲,孙磊,张国军,任建成,徐海英. 不同架式‘愛神玫瑰葡萄果实成熟期间单萜积累及相关基因的表达[J]. 中国农业科学,2019,52(7):1136-1149.
WANG Huiling,WANG Xiaoyue,YAN Ailing,SUN Lei,ZHANG Guojun,REN Jiancheng,XU Haiying. The accumulationof monoterpenes and the expression of its biosynthesis relatedgenes in‘Aishen Meiguigrape berries cultivated in differenttrellis systems during ripening stage[J]. Scientia AgriculturaSinica,2019,52(7):1136-1149.
[33] AULDRIDGE M E,MCCARTY D R,KLEE H J. Plant carotenoidcleavage oxygenases and their apocarotenoid products[J].Current Opinion in Plant Biology,2006,9(3):315-321.
[34] 刘春艳. 水分胁迫对赤霞珠葡萄果实挥发性风味物质的影响[D].银川:宁夏大学,2018.
LIU Chunyan. Effects of water stress on volatile flavor of CabernetSauvignon grape[D]. Yinchuan:Ningxia University,2018.