马源, 段倩雯, 董旭鹏, 刘澈, 马玉清
泛连接蛋白1参与炎症调控及细胞焦亡的研究进展*
马源1, 段倩雯1, 董旭鹏1, 刘澈1, 马玉清2△
(1兰州大学第一临床医学院,甘肃 兰州 730000;2兰州大学第一医院麻醉科,甘肃 兰州 730000)
泛连接蛋白1;炎症;细胞焦亡;胱天蛋白酶;白细胞介素1β
1.1Panx1概况Panx1作为泛连接蛋白家族成员之一,激活后可在细胞膜上形成通道,释放10 kD以内的物质于细胞外,如腺苷三磷酸(adenosine triphosphate, ATP)、尿苷三磷酸(uridine triphosphate, UTP)、K+和Ca2+等。细胞内物质作为炎症介质,经Panx1释放到细胞外,诱导失控性炎症反应发生[1]。
Panx1是同源七聚体,其亚基由三部分构成:细胞外结构域、跨膜结构域和细胞内C端结构域,C端结构域存在酶切位点。Panx1通道随C端结构域剪切后打开,释放ATP、离子及其他炎症介质到细胞外,激活相应的炎症反应。生理状态下,C端结构域阻碍Panx1通道开放,仅允许小离子在Panx1缝隙流动。泛连蛋白有三种亚型,Panx1、Panx2和Panx3,三者拓扑结构相似,但分布不同。Panx1广泛存在于哺乳动物组织,Panx2在神经元和胶质细胞中丰富表达,Panx3参与皮肤发育和骨骼形成[2]。Panx1和细胞间缝隙连接蛋白(connexin)作为连接细胞内外环境的通道,释放炎症介质和ATP,启动细胞炎症。与connexin不同,Panx1通道的开启更直接,Panx1的N端结构域可以被细胞膜外糖蛋白糖基化,这是Panx1无需形成细胞-细胞间通道即可激活的主要原因,因此,Panx1有利于诱导失控性炎症反应[3]。
1.2Panx1通道的激活Panx1缺乏特异性激活剂,但Panx1通道可通过多种途径被激活。
1.2.1高浓度离子激活Panx1细胞外高浓度K+激活Panx1通道。Santiago等[4]将海马切片置于含有高浓度K+的人工脑脊液,Western blot检测,Panx1蛋白丰富表达。Dahl等[5]染色细胞膜,扫描电镜观察到细胞外高浓度K+可使Panx1通道直径扩大10倍。Silverman等[3]发现,细胞外K+浓度达100 mmol/L可以激活、打开Panx1通道。
细胞内高浓度Ca2+激活Panx1通道。López等[6]拉伸HeLa细胞膜,膜片钳技术检测Panx1通道电流变化,电镜观察Panx1通道对荧光染料DAPI的摄取情况,提出Panx1激活的可能机制:细胞内Ca2+浓度骤升,激活钙调蛋白和钙/钙调素蛋白依赖的蛋白激酶II(Ca2+/calmodulin-dependent protein kinase II, CaMKII),CaMKII磷酸化Panx1,Panx1通道选择性释放细胞内物质,加重HeLa细胞炎症反应。
1.2.2胱天蛋白酶(caspase)切割激活Panx1caspase作为保守的蛋白酶分子,是细胞焦亡的关键调节因子。caspase-3、-7和-11可剪切Panx1的C端结构域。Chekeni等[7]通过caspase-Panx1免疫共沉淀发现,caspase-3和caspase-7裂解Panx1的能力最强。Ruan等[8]发现,caspase-7可以剪切Panx1孔道尾部C端,解除Panx1 C端对Panx1通道的阻塞,Panx1抑制剂可逆转该过程。Yang等[9]发现caspase-11可直接切割并激活Panx1通道,细胞内的细菌内毒素脂多糖(lipopolysaccharide, LPS)激活caspase-11,caspase-11裂解Panx1的C端结构域,Panx1通道打开,释放ATP到细胞外。敲除-基因可以抑制细胞焦亡,降低脓毒症大鼠的死亡率。
1.2.3酪氨酸磷酸化激活Panx1酪氨酸磷酸化可以增强Panx1活性。Weilinger等[10-11]发现,海马锥体神经元Panx1的电流活动与-甲基-D-天冬氨酸-酪氨酸激酶相关,抑制酪氨酸激酶,细胞膜表面Panx1电流活动减弱;免疫共沉淀检测到大量磷酸化酪氨酸-Panx1复合体,二者呈正相关,因此,酪氨酸磷酸化提升Panx1通道活性。酪氨酸磷酸化激活Panx1具有静脉选择性,Ruan等[4]磷酸化血管内皮酪氨酸位点,结果发现,Panx1在肠系膜静脉内皮丰富表达,但胸背动脉内皮Panx1无明显表达[12]。López等[6]发现,瞬时Ca2+内流激活钙调蛋白磷酸酶,CaMKII位点磷酸化,CaMKII磷酸化位点可能是Panx1的酪氨酸残基394。Metz等[13]发现,免疫受体酪氨酸活化基序(immunorecepter tyrosine-based activation motif, ITAM)和G蛋白偶联受体(G protein-coupled receptor, GPCR)可以磷酸化血小板Panx1的酪氨酸残基198和酪氨酸残基308,因此ITAM和GPCR可能是酪氨酸磷酸化激活Panx1的重要条件。
1.2.4机械拉伸激活Panx1Panx1可经细胞膜机械拉伸激活。韦中亚等[14]下调培养液浓度,支气管上皮细胞不断吸水膨胀,细胞膜逐渐拉伸,Panx1通道大量开放。Oishi等[15]拉伸小鼠心肌细胞膜,Panx1激活,释放ATP到心肌间质,心肌炎症反应进行性加重。敲除基因,或使用Panx1抑制剂和模拟抑制肽后再次拉伸小鼠心肌细胞,Panx1通道开放及其释放ATP的数量明显下降,心肌细胞得到保护[16]。
1.3Panx1通道的抑制Panx1的抑制可通过Panx1抑制剂和基因敲除技术实现。Panx1抑制剂主要有生胃酮(carbenoxolone, CBX)、丙磺舒和Panx1模拟抑制肽(10Panx1)。CBX是connexin抑制剂,临床用于胃黏膜保护。Panx1通道和connexin通道具有相似性,Lohman等[12]发现,CBX可部分抑制Panx1活性,因此,CBX对于Panx1通道的封闭不具有特异性。丙磺舒可以调控肾小管对尿酸的重吸收,间接治疗痛风[17]。小鼠海马体丰富表达Panx1,Zhang等[18]腹腔注射丙磺舒,海马体Panx1通道的开放和ATP释放的含量均减少,神经元炎症反应减弱,脓毒症小鼠脑病相关行为和认知功能好转。人工合成的Panx1特异性抑制肽10Panx1可以封闭Panx1孔道的空间位置[19]。Grimmer等[20]应用10Panx1到急性缺氧的肺动脉平滑肌细胞培养基,Panx1活性抑制,平滑肌细胞收缩反应改善,但10Panx1对慢性缺氧的肺动脉平滑肌细胞的收缩无效,因此,10Panx1对于Panx1通道的封闭具有特异性。除上述药物,抗疟药甲氟喹、氯离子通道抑制剂、甘草提取物甘草次酸和非甾体抗炎药中间体氟芬那酸都可以减弱Panx1通道产生的电流,尽管效果不佳[21-22]。除药物抑制Panx1通道活性,基因敲除也可以缓解Panx1引起的炎症反应。Su等[23]敲除肾脏近曲小管细胞的基因,细胞中铁死亡相关蛋白表达量减少;沉默缺血再灌注小鼠基因,血浆肌酐和肾组织丙二醛(malondialdehyde, MDA)含量降低,肾组织病理性损伤减轻。
Grimmer等[20]发现,丙磺舒抑制Panx1的方式与其它药物不同。丙磺舒通过脂质疏水门控[24]途径,诱导Panx1构象改变,丙磺舒使Panx1亚基N端发生螺旋,定向到细胞质,脂质迁移至Panx1亚基之间,封闭Panx1通道。因此,Panx1拮抗剂具有不同的作用模式。
目前,Panx1抑制剂特异性较低,需要开发特异性较高的药物,可以针对基因表达或Panx1上下游转运途径,设计理想的药物,减弱Panx1相关的炎症反应。
Panx1在嗜中性粒细胞、树突状细胞、单核巨噬细胞和T细胞等免疫细胞中表达[3]。Panx1通道以自分泌或旁分泌方式,释放炎症介质和ATP,刺激中性粒细胞和巨噬细胞趋化[25]以及单核巨噬细胞焦亡[26]启动,细胞焦亡再次释放大量炎症介质,形成失控性炎症反应。
2.1Panx1参与炎症反应
2.1.1Panx1释放ATPATP作为维持机体生长代谢的重要能量来源,生理状态下,仅少量通过胞吐转运到细胞外。ATP作为炎症“find-me”与“eat-me”信号分子[27],诱导单核巨噬细胞分化,巨噬细胞分泌白细胞介素1(interleukin-1, IL-1)、IL-6和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)等炎症因子,吞噬凋亡坏死的细胞、细胞碎片、细菌和其它有害物质,提高机体抗感染能力。但细胞外高浓度ATP引发失控性炎症反应,甚至炎症风暴[28]。在高浓度K+、Ca2+等激活条件下,Panx1通道广泛打开,大量ATP被释放到细胞外,破坏细胞内环境,细胞发生水肿,细胞膜通透性增加以及ATP渗出,形成ATP-细胞破坏的恶性循环[6]。炎症介质激活caspase-8,caspase-8相继激活caspase-1/-3/-7[29]。Panx1通道经caspase-3[7]、caspase-7[8, 30]和caspase-11[9]剪切修饰后激活、打开。因此,caspase激活Panx1通道,释放ATP到细胞外是失控性炎症反应的关键通路之一。
2.1.2Panx1激活NLRP3炎症小体嘌呤能P2X7受体(purinergic P2X7 receptor, P2X7R)具有抗炎、抗氧化、介导细胞凋亡等功能[31]。核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)炎症小体是介导细胞焦亡的关键蛋白[32]。目前关于Panx1/P2X7R与NLRP3炎症小体、细胞焦亡的研究不断增加。
P2X7R是ATP门控离子通道,ATP作为配体与P2X7R特异性结合,P2X7离子通道开启,释放K+到细胞外是核因子κB(nuclear factor-κB, NF-κB)和NLRP3炎症小体激活的必要条件[32]。体外实验发现,细胞培养基ATP浓度≥1.0 mmol/L,P2X7R特异性激活[33-35]。Yue等[36]观察大鼠抑郁症模型,大鼠海马体的小胶质细胞数量和炎症因子表达明显增加,ATP、P2X7R、NLRP3炎症小体、caspase-1及其前体均丰富表达;敲除大鼠基因,抑郁和焦虑的症状明显好转,NLRP3炎症小体、caspase-1和IL-1炎症因子明显减少。Panx1是ATP释放到细胞外的主要通道。李娜等[37]在脓毒症大鼠急性肺损伤模型中发现,Panx1和P2X7R在肺泡上皮细胞丰富表达,肺泡灌洗液存在大量ATP,抑制Panx1[37]或P2X7R[38],灌洗液ATP和细胞焦亡关键蛋白NLRP3、caspase-1和gasdermin D (GSDMD)表达量都减少,肺组织病理评分和IL-1相关炎症因子(IL-1β和IL-18)含量恢复正常。Panx1通过P2X7R影响NLRP3炎症小体合成,NLRP3炎症小体效应蛋白caspase-1促使IL-1β和IL-18成熟;IL-1β是一种有效的促炎细胞因子,诱导炎症信号级联,炎症介质大量释放,诱导失控性炎症反应[39]。因此,Panx1作为P2X7R/NLRP3上游的关键信号蛋白,激活NLRP3炎症小体,加重炎症反应。
2.2Panx1与细胞焦亡细胞死亡是限制感染的有效策略,如凋亡、铁死亡和焦亡等。细胞焦亡是caspase-1和鼠源caspase-11(人源caspase-4、-5)驱动的溶解性、炎症的细胞死亡[40]。细胞焦亡是GSDMD蛋白介导的细胞程序性死亡,形态上表现为细胞持续肿胀,细胞膜破裂,细胞内容物释放到细胞外,诱发炎症因子风暴[41]。Panx1通道及其下游与细胞焦亡密切相关。
2.2.1Panx1与经典细胞焦亡caspase-1介导的细胞焦亡属于经典型细胞焦亡[40]。Panx1激活P2X7R/NF-κB/NLRP3/Caspase-1信号通路。Qu等[42]使用基因敲除技术沉默原代巨噬细胞的和表达,结果发现,Panx1对于细胞内ATP释放、P2X7R和caspase-1激活不可或缺。在应激大鼠的肾小管上皮细胞中,杨昊天[43]发现,P2X7R与NLRP3炎症小体丰富表达,敲除或抑制,NLRP3炎症小体蛋白表达量减少。因此,Panx1和P2X7R是经典型细胞焦亡的关键信号蛋白。
Panx1作为ATP激活P2X7R的上游通路蛋白,与P2X7R共同允许胞内钾离子外流,钾离子外流是NF-κB激活的核心条件[44]。NF-κB参与NLRP3炎症小体的转录,NLRP3炎症小体由感受器蛋白NLRP3、衔接蛋白ASC (apoptosis-associated speckle-like protein containing a caspase recruitment domain)和效应蛋白caspase-1组装而成[45-46]。Panx1及其下游产物活化caspase-1,caspase-1裂解GSDMD蛋白,经典细胞焦亡发生。生理状态下,GSDMD的C端蛋白限制其活性,caspase-1剪切GSDMD的C端和N端,GSDMD-N端相互聚合,插入细胞膜,形成细胞膜非选择性孔道,细胞内物质如IL-1β和IL-18经该孔道大量释放,激活强烈的炎症反应,细胞内外渗透压失衡,细胞膜肿胀破裂,细胞核固缩[47]。杨佳乐[48]与王重阳等[49]发现,抑制NLRP3与caspase-1可以有效缓解大鼠肺毛细血管内皮细胞焦亡和炎症损伤。Seo等[50]发现,抑制Panx1可以减弱创伤性脑损伤引起的神经炎症,Panx1抑制剂可降低小胶质细胞和单核细胞浸润,经典细胞焦亡关键蛋白NLRP3、caspase-1和GSDMD表达下降,神经元焦亡受到抑制。Zhang等[51]敲除髓系白血病细胞单核细胞THP-1的基因,再次用LPS和ATP刺激THP-1,NLRP3炎症小体的表达及IL-1β和IL-18的分泌显著下降,THP-1细胞的经典焦亡得到有效控制。
2.2.2Panx1与非经典细胞焦亡Kayagaki等[52]发现,除caspase-1裂解GSDMD,还存在caspase-11直接裂解GSDMD诱导细胞焦亡发生,并将caspase-11介导的细胞焦亡定义为非经典焦亡途径。caspase-11经LPS[53]和caspase-11[29]激活,LPS可通过细菌分泌的液泡、宿主细胞膜孔道和宿主巨噬细胞胞吞等途径进入细胞质[54]。caspase-11介导的非经典焦亡途径独立于caspase-1,caspase-11激活后裂解GSDMD,细胞膜非选择性孔道形成[29]。刘木子樱[55]发现,GSDMD-N端含量与LPS处理后的caspase-11表达量正相关,Western blot检测到GSDMD-N端蛋白含量随caspase-11表达减少而下降。
caspase-11剪切Panx1激活细胞焦亡。Yang等[9]证实Panx1是caspase-11介导非经典细胞焦亡的关键信号蛋白,体内实验发现,抑制或基因敲除、和,脓毒症小鼠早期存活率提升。体外实验发现,Panx1通道的开放和caspase-11的表达高度一致。Yin等[56]发现,caspase-11和caspase-3/-7都有切割Panx1 C端结构域的功能。反之,敲除小鼠-基因,Panx1通道和NLRP3炎症小体表达下降,caspase-1、GSDMD和IL-1相关炎症因子的表达以及细胞外ATP含量都减少。
综上所述,Panx1参与caspase-1介导的经典和caspase-11介导的非经典细胞焦亡。靶向调控Panx1可有效抑制细胞焦亡,减少炎症因子的产生与释放,减轻炎症反应对细胞、组织和器官的损害。因此,Panx1作为炎症新靶点,具有潜在的治疗价值。
Panx1在哺乳动物细胞中广泛存在,与各类炎症性疾病密切相关[3]。Panx1作为炎性疾病治疗的有效靶点,调控Panx1或许可以预防、减缓或逆转脓毒症、缺血性器官和其它炎症性疾病中Panx1过表达导致的损害。关于Panx1的研究已有20余年,但其作用机制尚未完全明确:Panx1在复杂的生物学效应中如何双向调控炎症[57-58];与connexin相比,Panx1对生物屏障作用的研究少见;缺乏Panx1特异激活剂;10Panx1能够特异性地抑制Panx1,但未见其对人体毒副作用的相关报道;Panx1抑制剂CBX和丙磺舒在动物模型中具有一定效果,临床中除保护胃黏膜和治疗痛风,如何转换治疗其它炎症性疾病尚不可知。因此,Panx1相关机制、特异性激活剂和抑制剂的开发仍需进一步探索。
[1] Acosta ML, Mat Nor MN, Guo CX, et al. Connexin therapeutics: blocking connexin hemichannel pores is distinct from blocking pannexin channels or gap junctions[J]. Neural Regener Res, 2021, 16(3):482-488.
[2]牟妍希, 汪令伟, 王林. Pannexin与肿瘤相关性的研究进展[J]. 中国病理生理杂志, 2017, 33(11):2110-2112.
Mu YX, Wang LW, Wang L. Progress in relationship between pannexin and tumors[J]. Chin J Pathophysiol, 2017, 33(11):2110-2112.
[3] Silverman WR, De Rivero Vaccari JP, Locovei S, et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes[J]. J Biol Chem, 2009, 284(27):18143-18151.
[4] Santiago MF, Veliskova J, Patel NK, et al. Targeting Pannexin1 improves seizure outcome[J]. PLoS One, 2011, 6(9):e25178.
[5] Dahl G. ATP release through pannexon channels[J]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1672):20140191.
[6] López X, Palacios-Prado N, Güiza J, et al.A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII[J]. Proc Natl Acad Sci U S A, 2021, 118(32):e2108967118.
[7] Chekeni FB, Elliott MR, Sandilos JK, et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis[J]. Nature, 2010, 467(7317):863-867.
[8] Ruan Z, Orozco IJ, Du J, et al. Structures of human pannexin 1 reveal ion pathways and mechanism of gating[J]. Nature, 2020, 584(7822):646-651.
[9] Yang D, He Y, Muñoz-Planillo R, et al. Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock[J]. Immunity, 2015, 43(5):923-932.
[10] Weilinger NL, Lohman AW, Rakai BD, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity[J]. Nat Neurosci, 2016, 19(3):432-442.
[11] Weilinger NL, Tang PL, Thompson RJ. Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases[J]. J Neurosci, 2012, 32(36):12579-12588.
[12] Lohman AW, Leskov IL, Butcher JT, et al. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation[J]. Nat Commun, 2015, 6:7965.
[13] Metz LM, Elvers M. Pannexin-1 activation by phosphorylation is crucial for platelet aggregation and thrombus formation[J]. Int J Mol Sci, 2022, 23(9):5059.
[14] Wei ZY, Qu HL, Dai YJ, et al. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells[J]. Neural Regener Res, 2021, 16(5):899-904.
[15] Oishi S, Sasano T, Tateishi Y, et al. Stretch of atrial myocytes stimulates recruitment of macrophages via ATP released through gap-junction channels[J]. J Pharmacol Sci, 2012, 120(4):296-304.
[16] Jorquera G, Meneses-Valdés R, Rosales-Soto G, et al. High extracellular ATP levels released through pannexin-1 channels mediate inflammation and insulin resistance in skeletal muscle fibres of diet-induced obese mice[J]. Diabetologia, 2021, 64(6):1389-1401.
[17] Tunstall BJ, Lorrai I, McConnell SA, et al. Probenecid reduces alcohol drinking in rodents. Is pannexin1 a novel therapeutic target for alcohol use disorder?[J]. Alcohol Alcohol, 2019, 54(5):497-502.
[18] Zhang Z, Lei Y, Yan C, et al. Probenecid relieves cerebral dysfunction of sepsis by inhibiting Pannexin 1-dependent ATP release[J]. Inflammation, 2019, 42(3):1082-1092.
[19] Wei R, Bao W, He F, et al. Pannexin1 channel inhibitor (10panx) protects against transient focal cerebral ischemic injury by inhibiting RIP3 expression and inflammatory response in rats[J]. Neuroscience, 2020, 437:23-33.
[20] Grimmer B, Krauszman A, Hu X, et al. Pannexin 1: a novel regulator of acute hypoxic pulmonary vasoconstriction[J]. Cardiovasc Res, 2022, 118(11):2535-2547.
[21] Dahl G, Qiu F, Wang J. The bizarre pharmacology of the ATP release channel pannexin1[J]. Neuropharmacology, 2013, 75:583-593.
[22] Iglesias R, Spray DC, Scemes E. Mefloquine blockade of Pannexin1 currents: resolution of a conflict[J]. Cell Communi Adhes, 2009, 16(5/6):131-137.
[23] Su L, Jiang X, Yang C, et al. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury[J]. J Biol Chem, 2019, 294(50):19395-19404.
[24] Anderson CL, Thompson RJ. Intrapore lipids hydrophobically gate pannexin-1 channels[J]. Sci Signal, 2022, 15(720):eabn2081.
[25] Scemes E, Veliskova J. Exciting and not so exciting roles of pannexins[J]. Neurosci Lett, 2019, 695:25-31.
[26] Kameritsch P, Pogoda K. The role of connexin 43 and pannexin 1 during acute inflammation[J]. Front Physiol, 2020, 11:594097.
[27] Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response[J]. Annu Rev Immunol, 2019, 37:325-347.
[28] Das R, Chinnathambi S. Actin-mediated microglial chemotaxis via G-protein coupled purinergic receptor in Alzheimer's disease[J]. Neuroscience, 2020, 448:325-336.
[29] Zhang C, Ye B, Wei J, et al. MiR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-α TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):4110-4118.
[30] Thompson RJ, Jackson MF, Olah ME, et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus[J]. Science, 2008, 322(5907):1555-1559.
[31] Chen K W, Demarco B, Heilig R, et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10):e101638.
[32] Adinolfi E, Giuliani AL, De Marchi E, et al. The P2X7 receptor: a main player in inflammation[J]. Biochem Pharmacol, 2018, 151:234-244.
[33] Dias L, Lopes CR, Gonçalves FQ, et al. Crosstalk between ATP-P2X7and adenosine A2Areceptors controlling neuroinflammation in rats subject to repeated restraint stress[J]. Front Cell Neurosci, 2021, 15:639322.
[34] Asatryan L, Ostrovskaya O, Lieu D, et al. Ethanol differentially modulates P2X4 and P2X7 receptor activity and function in BV2 microglial cells[J]. Neuropharmacology, 2018, 128:11-21.
[35] Wiley JS, Sluyter R, Gu BJ, et al. The human P2X7 receptor and its role in innate immunity[J]. Tissue Antigens, 2011, 78(5):321-332.
[36] Yue N, Huang H, Zhu X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors[J]. J Neuroinflammation, 2017, 14:102.
[37] Li N, Jia J, Wu X, et al. Regulatory effect of hemichannels protein Pannexin-1 on P2X7 receptor activity in the lungs of mice with lung injury[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2018, 30(11):1071-1076.
[38] Zhang Y, Li F, Wang L, et al. A438079 affects colorectal cancer cell proliferation, migration, apoptosis, and pyroptosis by inhibiting the P2X7 receptor[J]. Biochem and Biophys Res Commun, 2021, 558:147-153.
[39] Solle M, Labasi J, Perregaux DG, et al. Altered cytokine production in mice lacking P2X7 receptors[J]. J Biol Chem, 2001, 276(1):125-132.
[40] Chen KW, Demarco B, Heilig R, et al.Extrinsic and intrinsic apoptosis activate pannexin‐1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10):e101638.
[41] 于百莹, 惠雪, 赵曙, 等. 细胞焦亡及其与癌症的关系[J]. 现代肿瘤医学, 2022, 30(13):2471-2475.
Yu BY, Hui X, Zhao S, et al. Pyrolysis and its relationship with cancer[J]. J Mod Oncol, 2022, 30(13):2471-2475.
[42] Qu Y, Misaghi S, Newton K, et al. Pannexin-1 is required for atp release during apoptosis but not for inflammasome activation[J]. J Immunol, 2011, 186(11):6553-6561.
[43] 杨昊天. 基于P2X7R/NF-κB/NLRP3通路探究右美托咪定对急性应激致大鼠肾损伤的保护作用机制[D]. 哈尔滨: 东北农业大学, 2021.
Yang HT. Protective mechanism of dexmedetomidine on acute stress induced renal injury in rats via the regulation of P2X7R/NF-κB/NLRP3 pathway[D]. Harbin: Northeast Agricultural University, 2021.
[44] Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk[J]. Oxid Med Cell Longev, 2021, 2021:8868361.
[45]杨一凡, 刘立丽, 聂作明, 等. NLRP3炎症小体在MS/EAE发病机制中的作用及其靶向治疗[J]. 中国病理生理杂志, 2020, 36(1):181-187.
Yang YF, Liu LL, Nie ZM, et al. NLRP3 inflammasome in pathogenesis of MS/EAE and its targeted therapy[J]. Chin J Pathophysiol, 2020, 36(1):181-187.
[46] He R, Li Y, Han C, et al. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation[J]. Int Immunopharmacol, 2019, 73:379-388.
[47] Moretti J. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome[J]. Nat Immunol, 2022, 23(5):705-717.
[48] 杨佳乐, 沈祥春. 灯盏花乙素通过抑制NLRP3/caspase-1信号通路改善LPS+ATP诱导内皮细胞炎症反应和细胞焦亡[J]. 中国药理学通报, 2022, 38(8):1196-1201.
Yang JL, Shen XC. Scutellarin improves LPS+ATP induced inflammation and pyroptosis of endothelial cells by inhibitingNLRP3/caspase-1 signaling pathway[J]. Chin Pharmacol Bull, 2022, 38(8):1196-1201.
[49] 王重阳. 虎杖苷通过抑制P2X7R-NLRP3介导的自噬缓解哮喘气道炎症以及气道重塑[D]. 延吉: 延边大学, 2020.
Wang CY. Polydatin relieves airway inflammation and remodeling by inhibiting P2X7R-NLRP3-mediated autophagy in asthma[D].Yanji: Yanbian University, 2020.
[50] Seo JH, Dalal MS, Calderon F, et al. Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma[J]. J Neuroinflammation, 2020, 17(1):245.
[51] Zhang S, Yuan B, Lam JH, et al. Structure of the full-length human Pannexin1 channel and insights into its role in pyroptosis[J]. Cell Discov, 2021, 7:30.
[52] Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371):117-121.
[53] Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock[J]. Science, 2013, 341(6151):1250-1253.
[54] Finethy R, Luoma S, Orench-Rivera N, et al. Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins[J]. mBio, 2017, 8(5):e01188-17.
[55] 刘木子樱. caspase-11炎症小体激活的结构基础以及活化机制[D]. 合肥: 中国科学技术大学, 2020.
Liu MZY. The structural basis of caspase-11 inflammasome signal activation[D]. Heifei: University of Science and Technology of China , 2020.
[56] Yin F, Zheng P, Zhao L, et al. Caspase-11 promotes NLRP3 inflammasome activation via the cleavage of pannexin1 in acute kidney disease[J]. Acta Pharmacol Sin, 2022, 43(1):86-95.
[57] Koval M, Cwiek A, Carr T, et al. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury[J]. Purinergic Signal, 2021, 17(4):521-531.
[58] Lucas CD, Medina CB, Bruton FA, et al. Pannexin 1 drives efficient epithelial repair after tissue injury[J]. Sci Immunol, 2022, 7(71):eabm4032.
Progress in pannexin 1 involved in inflammation regulation and pyroptosis
MA Yuan1, DUAN Qianwen1, DONG Xupeng1, LIU Che1, MA Yuqing2△
(1,730000,;2,,730000,)
Pannexin 1 (Panx1), a member of the ubiquitin family, is widely expressed in mammalian tissues. When the body is in an inflammatory state, Panx1 channel is activated and opened by high concentration of ion stimulation, caspase shearing, tyrosine phosphorylation and mechanical stretching pathway, which allows intracellular ATP to be released outside the cell and aggravates inflammatory response. Panx1 is also involved in the occurrence of pyroptosis in inflammatory response, and activates and releases a large number of interleukin-1-related inflammatory factors. Inflammatory response is the body's defense response to infection, but overexpression of Panx1 leads to uncontrolled inflammatory response. Therefore, Panx1, as a new intervention target of inflammation, has certain research value and application prospect.
pannexin 1; inflammation; pyroptosis; caspase; interleukin-1β
1000-4718(2023)07-1318-06
2022-10-08
2023-04-03
13369456727; E-mail: myq2392466@163.com
R363; R329.2+8
A
10.3969/j.issn.1000-4718.2023.07.020
[基金项目]甘肃省自然科学基金资助项目(No. 21JRIRA077)
(责任编辑:宋延君,罗森)