L-fuzzy逆子半群

2023-08-09 05:51赵立军赵晗
关键词:子群等价正则

赵立军 赵晗

文章编号:1003?6180(2023) 03?0005?03

摘  要:给出[L]-fuzzy子逆半群和[L]-fuzzy弱逆子半群的定义,借助[L]-Fuzzy集的截集给出其等价刻画.

关键词:[L]-fuzzy子半群;[L]-fuzzy正则子半群;[L]-fuzzy逆子半群;[L]-fuzzy弱逆子半群

[   中图分类号    ]O159 [    文献标志码   ]  A

L-fuzzy Inverse Subsemigroups

ZHAO Lijun1,ZHAO Han2

(1.College of Mathematics and Statistics ,Shaoguan College,Shaoguan 512005 ,China;

2.Mathematics Group, Guangdong Nanxiong School, Nanxiong 512400, China)

Abstract:In this paper, the concept of L-fuzzy inverse subsemigroup and L-fuzzy weak inverse subsemigroup are given. The characterizations of L-fuzzy inverse subsemigroup and L-fuzzy weak inverse subsemigroup are presented by means of cut sets of L-fuzzy sets.

Key words: L-fuzzy subsemigroup; L-fuzzy regular subsemigroup; L-fuzzy inverse

subsemigroup;L-fuzzy weak inverse subsemigroup

1 引言及预备知识

本文给出[L]-fuzzy逆子半群及[L]-fuzzy弱逆子半群的定义,给出[L]-fuzzy逆子半群与[L]-fuzzy正则子半群及[L]-fuzzy弱正则子半群之间的关系,并借助[L]-Fuzzy集的截集给出[L]-fuzzy逆子半群的等價刻画.

本文[L]恒为完全分配格,[M(L)]表示[L]中所有非零并既约元之集,[P(L)]表示[L]中所有非单位素元之集.[X,S]表示非空通常集.[LX]表示[X]上的所有[L]-Fuzzy集的全体 .本文不区别分明集与其特征函数.对空集[??L],定义[∧?=1]和[∨?=0].根据参考文献[1], [L]中的每一个元素[a]都有最大极大族和最大极小族,分别记作[α(a)]和[β(a)].记[α*(a)=α(a)?P(L)],对于[A∈LX]与[a∈L],沿用参考文献[2]的记号.

[A[a]=x∈XA(x)≥a],          [A(a)=x∈Xa∈β(A(x))],

[A[a]=x∈Xa?α(A(x))],     [A(a)=][x∈XA(x)?a].

定理1[2,3] 设[A∈LX],则:

(1)[A=∨a∈La∧A[a]]=[∨a∈M(L)a∧A[a]];

(2)[A=∧a∈La∨A[a]]=[∧a∈P(L)a∨A(a)].

定义1[4] 设[S]是半群,[A∈LS].若[A]满足

[?x,       y∈S,        A(xy)≥A(x)∧A(y)],

则称为[A]为[S]的[L]-fuzzy子半群.

定理2[[3]]  设[S]是半群,[A∈LS].则下列条件等价:

(1)[A]是[S]的[L]-fuzzy子半群;

(2)[?a∈L,A[a]]是[S]的子半群;

(3)[?a∈M(L),A[a]]是[S]的子半群;

(4)[?a∈L,A[a]]是[S]的子半群;

(5)[?a∈P(L),A[a]]是[S]的子半群;

(6)[?a∈P(L),A(a)]是[S]的子半群.

定义3[7]  设[S]是半群,若[?x∈S,]都存在[x∈S],使得[xxx=x],则称[S]是正则半群.记[R(x)={x∈Sxxx=x}].

定义4[7]  设[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),]都存在[x∈R(x)],使得[A(x)≥A(x)],则称[A]是[S]的[L]-fuzzy正则子半群.

定义5[7]  设[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),R(x)≠?]且[∨x∈R(x)A(x)≥A(x)].则称[A]是[S]的[L]-fuzzy弱正则子半群.

2 L-fuzzy子逆半群及等价刻画

定义6[6]  设[S]是半群,若[?x∈S,]都存在唯一[x-1∈S],使得[xx-1x=x,x-1xx-1=x-1],则称[S]是逆半群.记[I(x)={x-1∈Sxx-1x=x,x-1xx-1=x-1}].

定义7 设[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),]都存在[x-1∈I(x)],使得[A(x-1)≥A(x)],则称[A]是[S]的[L]-fuzzy逆子半群.

定理3 设[A]是半群[S]的[L]-fuzzy子半群,则下列条件等价:

(1)[A]是[S]的[L]-fuzzy逆子半群;

(2)[?a∈M(L),A[a]]是[S]的子逆半群;

(3)[?a∈P(L),A(a)]是[S]的子逆半群;

(4)[?a∈α(0),A[a]]是[S]的子逆半群;

(5)[?a∈α*(0),A[a]]是[S]的子逆半群.

证明  [(1)?(2)] [?a∈M(L)], 若[x∈A[a]],则[A(x)≥a>0],故[0∈β(A(x))],从而[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)≥a],从而[x-1∈A[a]],故[A[a]]是[S]的子逆半群.

[(2)?(1)] [?a∈M(L),x∈A(0)].若[A(x)≥a,]则[x∈A[a]].由(2)知存在[x-1∈I(x)],使得[x-1∈A[a]],从而[A(x-1)≥a,][A(x-1)≥A(x).]故[A]是[S]的[L]-fuzzy逆子半群.

[(1)?(3)?a∈P(L),]若[x∈A(a)],则[A(x)?a],所以,[A(x)>0],从而[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)],所以,[A(x-1)?a],即[x-1∈A(a)].故[A(a)]是[S]的子逆半群.

[(3)?(1)?a∈P(L),x∈A(0)].若[A(x)?a],则[x∈A(a)].由(3)知存在[x-1∈I(x)],使得[x-1∈A(a)],所以,[A(x-1)?a],从而[A(x-1)≥A(x).]故[A]是[S]的[L]-fuzzy逆子半群.

[(1)?(4)?a∈α(0).]若[x∈A[a]],则[a?α(A(x))],从而[A(x)≠0],故[0∈β(A(x))],所以,[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)],故[α(A(x-1))?α(A(x))],从而[a?α(A(x-1))],所以,[x-1∈A[a]],故[A[a]]是[S]的子逆半群.

[(4)?(5)]显然.

[(5)?(1)]若[x∈A(0)],即[0∈β(A(x))],则[A(x)>0].[?a∈α*(0)],若[a?α*(A(x))],由于[a∈P(L)],从而[a?α(A(x))],即[x∈A[a]].由(5)知存在[x-1∈I(x)],使得[x-1∈A[a]],所以,[a?α(A(x-1))],[A(x-1)≥A(x)].故[A]是[S]的[L]-fuzzy逆子半群.

定义8  设[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),I(x)≠?],且[∨x-1∈I(x)A(x-1)≥A(x)].则称[A]是[S]的[L]-fuzzy弱逆子半群.

定理4 设[A]是半群[S]的[L]-fuzzy子半群,则下列条件等价:

(1)[A]是[S]的[L]-fuzzy弱逆子半群;

(2)[?a∈P(L),A(a)]是[S]的子逆半群.

证明  [(1)?(2)] [?a∈P(L)], 若[x∈A(a)],则[A(x)?a],从而[A(x)≠0],故[0∈β(A(x))],所以,[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)],从而[A(x-1)?a],即[x-1∈A(a)],故[A(a)]是[S]的子逆半群.

[(2)?(1)] [?a∈P(L),x∈A(0)].若[A(x)?a,]则[x∈A(a)].由(2)知存在[x-1∈I(x)],使得[x-1∈A(a)],从而[A(x-1)?a]且[I(x)≠?],所以,[A(x-1)≥A(x).]从而[∨x-1∈I(x)A(x-1)≥A(x)].故[A]是[S]的[L]-fuzzy弱逆子半群. 显然有定理5.

定理5 (1)若[A]是半群[S]的[L]-fuzzy逆子半群,则[A]是[S]的[L]-fuzzy正则子半群,反之不一定成立;

(2)若[A]是半群[S]的[L]-fuzzy逆子半群,则[A]是[S]的[L]-fuzzy弱逆子半群,反之不一定成立;

(3)若[A]是半群[S]的[L]-fuzzy弱逆子半群,则[A]是[S]的[L]-fuzzy弱正则子半群,反之不一定成立.

参考文献

[1]Wang G J. Theory of topological molecular latticces[J].Fuzzy Sets and Systems,1992,47:351-376.

[2]史福貴.[Lβ-]集合套与[Lα-]集合套理论极其应用[J].模糊系统与数学, 1995,9(4):65-72.

[3]Shi F G.L-Fuzzy Relations and L-Fuzzy Subgroups[J].The Journal of Fuzzy Mathematics,2000,8(2):491-499.

[4]Wang G J. Theory of topological molecular latticces[J].Fuzzy Sets and Systems, 1992,47:351-376.

[5] 赵立军. L-Fuzzy子群的L-Fuzzy同态[J].数学杂志,2003,23(4):503-506.

[6] 史福贵,王国民. L-Fuzzy子群与L-Fuzzy正规子群的表现定理[J]. 烟台师范学院学报:自然科学版,1995,11(1):16-19.

[7] 赵立军. L-Fuzzy正则子半群的刻画[J].韶关学院学报,2009(9):1-3.

编辑:琳莉

猜你喜欢
子群等价正则
超聚焦子群是16阶初等交换群的块
等价转化
子群的核平凡或正规闭包极大的有限p群
剩余有限Minimax可解群的4阶正则自同构
类似于VNL环的环
n次自然数幂和的一个等价无穷大
收敛的非线性迭代数列xn+1=g(xn)的等价数列
恰有11个极大子群的有限幂零群
有限秩的可解群的正则自同构
与Sylow-子群X-可置换的子群对有限群的影响