基于两类循环码构造3-设计

2023-06-21 03:59郑雪敏唐春明
关键词:设计

郑雪敏 唐春明

摘要:信道編码理论中最热门的课题之一是利用组合设计和群论等数学知识构造新的循环码.由于循环码具有良好的代数结构,被广泛应用于工程和通信等领域.构造在F7m上两类循环码族,第一类码的参数为[q+1,q-7,d],其中d≥6,m≥2且为整数;第二类码参数为[q+1,8,q-9],其中m≥2且为整数.设q=7m,由已给出的两类循环码的任意非零权重的码字的支撑集在一般射影线性群PGL(2,q)下是不变的,且一般射影线性群PGL(2,q)在射影直线PG(1,q)上的作用是3-传递的,从而可以验证对应的关联矩阵构造3-设计.

关键词:t-设计; 线性码; 一般射影线性群

中图分类号:O157.4; O29 文献标志码:A 文章编号:1001-8395(2023)05-0660-08

doi:10.3969/j.issn.1001-8395.2023.

1前言

2基础知识

3构造循环码和3-设计

4总结

利用群作用下不变的线性码的码坐标集支撑3-设计,是近些年比较热门的方法之一[13-15].本文在构造了一类循环码以后,用所确定的循环码及其对偶码的码坐标集支撑3-设计,主要结果有两个:第一个构造了在PGL(2,q)作用下不变的循环码C{2,3,4,5},并且确定了码C{2,3,4,5}及其对偶码的参数;第二个基于两类循环码C{2,3,4,5}和C⊥{2,3,4,5}构造了支撑3-设计,并给出了证明.

参考文献

[1] BETH T, JUNGNICKEL D, LENZ H. Design Theory[M]. Cambridge:Cambridge University Press,1999.

[2] COLBOURN C J, DINITZ J F. Handbook of Combinatorial Designs[M]. 2nd Ed. New York:Routledge and CRC Press,2006.

[3] DING C S. Designs From Linear Codes[M]. Singapore:World Sientific,2018.

[4] DING C S, TANG C M, TONCHEV V D. The projective general linear group PGL(2,q)and linear codes of length 2m+1[J]. Designs, Codes and Cryptography,2021,89(7):1713-1734.

[5] TANG C M, DING C S. An infinite family of linear codes supporting 4-designs[J]. IEEE Transactions on Information Theory,2021,67(1):244-254.

[6] XIANG C, TANG C, LIU Q. An infinite family of antiprimitive cyclic codes supporting Steiner systems S(3,8,7m+1)[J]. Designs, Codes and Cryptography,2022,90:1319-1333.

[7] DING C, LI C. Infinite families of 2-designs and 3-designs from linear codes[J]. Discrete Mathematics,2017,340(10):2415-2431.

[8] HUFFMAN W C, PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge:Cambridge University Press,2003.

[9] TANG C M. Infinite families of 3-designs from APN functions[J]. Journal of Combinatorial Designs,2020,28(2):97-117.

[10] DELSARTE P. On subfield subcodes of modified Reed-Solomon codes (Corresp.)[J]. IEEE Transactions on Information Theory,1975,21(5):575-576.

[11] GIORGETTI M, PREVITALI A. Galois invariance, trace codes and subfield subcodes[J]. Finite Fields and Their Applications,2010,16(2):96-99.

[12] LIU Q, DING C, MESNAGER S, et al. On infinite families of narrow-sense antiprimitive BCH codes admitting 3-transitive automorphism groups and their consequences[J]. IEEE Transactions on Information Theory,2022,68(5):3096-3107.

[13] DU X, WANG R, FAN C. Infinite families of 2-designs from a class of cyclic codes[J]. Journal of Combinatorial Designs,2020,28(3):157-170.

猜你喜欢
设计
二十四节气在平面广告设计中的应用
何为设计的守护之道?
《丰收的喜悦展示设计》
基于PWM的伺服控制系统设计
基于89C52的32只三色LED摇摇棒设计
基于ICL8038的波形发生器仿真设计
瞒天过海——仿生设计萌到家
设计秀
有种设计叫而专
从平面设计到“设计健康”