蒋沁纱 陈浩
四川師范大学学报(自然科学版)第46卷第5期
摘要:考虑一类空间变系数反应扩散方程的快速算法.针对二阶改进道格拉斯分裂时间离散所得线性代数系统,构造一类双参数交替分裂迭代方法.分析格式的收敛性,给出最优参数的取值,并获得相应预处理子.数值结果验证新方法的有效性及相比单参数分裂迭代格式的优越性.
关键词:变系数反应扩散方程; 改进道格拉斯分裂方法; 双参数; 交替分裂迭代方法; 预处理子
中图分类号:O241.82; O241.6 文献标志码:A 文章编号:1001-8395(2023)05-0638-08
1离散
2交替分裂迭代算法
3数值实验
4结束语
本文考虑了变系数反应扩散方程的快速算法,针对改进道格拉斯分裂时间离散所得的线性代数系统,构造了一类双参数交替分裂迭代法,分析了其收敛性及最优参数的取值.同时,将其与GMRES结合,构造了一类预处理GMRES的方法,数值结果验证了新方法的收敛性.
参考文献
[1] HUNDSDORFER W, VERWER J. Advection-diffusion Discretizations[M]. Berlin:Springer,2003:215-323.
[2] 孙志忠. 非线性发展方程的有限差分方法[M]. 北京:科学出版社,2018.
[3] ZHOU Z G, LIANG D. Mass-preserving time second-order explicit-implicit domain decomposition schemes for solving parabolic equations with variable coefficients[J]. Computational and Applied Mathematics,2018,37(4):4423-4442.
[4] EVANS L C. Partial Differential Equations[M]. Providence:American Mathematical Society,1999.
[5] HESTHAVEN J, GOTTLIEB S, GOTTLIEB D. Spectral Methods for Time-dependent Problems[M]. Cambridge:Cambridge University Press,2007.
[6] ISERLES A. A First Course in the Numerical Analysis of Differential Equations[M]. Cambridge:Cambridge University Press,1996.
[7] ARRARS A, INHOUT K J, HUNDSDORFER W, et al. Modified Douglas splitting methods for reaction-diffusion equations[J]. BIT Numerical Mathematics,2017,57(2):261-285.
[8] PEACEMAN D W, RACHFORD H H Jr. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics,1955,3(1):28-41.
[9] DOUGLAS J. Alternating direction methods for three space variables[J]. Numerische Mathematik,1962,4(1):41-63.
[10] BAI Z Z, GOLUB G H, NG M K. Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications,2003,24(3):603-626.
[11] CHEN H. A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods[J]. BIT Numerical Mathematics,2014,54(3):607-621.
[12] CHEN H. Generalized Kronecker product splitting iteration for the solution of implicit Runge-Kutta and boundary value methods[J]. Numerical Linear Algebra With Applications,2015,22(2):357-370.
[13] CHEN H, L W, ZHANG T T. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations[J]. Journal of Computational Physics,2018,360:1-14.
[14] BAI Z Z, LU K Y, PAN J Y. Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations[J]. Numerical Linear Algebra With Applications,2017,24(4):e2093.
[15] LIN X L, NG M K, SUN H W. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations[J]. SIAM Journal on Matrix Analysis and Applications,2017,38(4):1580-1614.
[16] 蒋沁纱,陈浩. 空间变系数反应扩散方程的一类交替分裂预处理迭代方法[J]. 重庆师范大学学报(自然科学版),2022,39(5):83-90.
[17] HORN R A, JOHNSON C R. Topics in Matrix Analysis[M]. Cambridge:Cambridge University Press,1991.
[18] SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia:SIAM,2003.
A Class of Alternating Splitting Preconditioning Method with Two Parameters
for Reaction-Diffusion Equations with Variable Coefficients in SpaceJIANG Qinsha,CHEN Hao(School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331)
Abstract:This paper consider fast algorithms for solving a class of reaction-diffusion equations with variable coefficients. We propose an alternating splitting iterative method with two parameters for solving the linear algebraic systems resulting from the modified Douglas splitting discretization of the reaction-diffusion equations. We show that the proposed scheme is convergent and the optimal parameters are given. A splitting preconditioner is also derived for the linear system. Numerical results show that the proposed methods is effective and superior to the splitting iterative scheme with a single parameter.
Keywords:reaction-diffusion equation with variable coefficients; modified Douglas splitting method; two parameters; alternating splitting iteration method; preconditioner
2020 MSC:65F10; 65L06; 65N22
(編辑 余毅)