黄婉娟 罗双华 张成毅
摘要:由于分位数回归模型的损失函数不光滑,所得参数估计的效率不高,为提高参数估计的效率,首先提出复合分位数光滑经验对数似然比,包括完全数据复合分位数光滑经验对数似然比、加权复合分位数光滑经验对数似然比和插值复合分位数光滑经验对数似然比,并在一定条件下证明了它们都是服从渐近卡方分布的.其次,根据该似然比构造了回归参数的置信区间,并证明了复合分位数光滑经验似然估计量是渐近正态的.最后,通过数值模拟实验说明了所得估计的有效性.
关键词:缺失数据; 复合分位数回归模型; 光滑经验对数似然比; 渐近正态性
中图分类号:O212 文献标志码:A 文章编号:1001-8395(2023)05-0628-10
1研究背景
与均值回归只拟合一条条件均值曲线相比,分位数回归拟合一簇曲线,能够充分考虑到各个分位点处的信息.于是,Zou等[1]提出适当地综合不同分位点处的信息以提高估计效率的想法,并证明了该方法能显著地提高参数估计的效率.另外,复合分位数回归估计方法不仅有效克服了单个分位数回归估计效率下降的缺陷,还继承了分位数回归的稳健性,且被证实可以克服非正态误差的干扰并显著提高估计效率,是一种稳健且有效的参数估计方法.
2方法与主要结果
3数值模拟
4主要定理的证明
5結束语
本文主要研究了响应数据随机缺失下一般线性复合分位数回归模型的光滑经验似然估计.由于分位数回归的损失函数不光滑,所得估计效率不高,为提高估计效率,故考虑对响应数据随机缺失的一般线性复合分位数回归模型使用光滑经验似然方法,并在一定条件下证明了缺失数据下一般线性复合分位数回归模型的光滑经验似然估计量的大样本性质.通过模拟实验说明了本文所提出估计的有效性.
参考文献
[1] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126.
[2] OWEN A B. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics,1990,18(1):90-120.
[3] OWEN A B. Empirical Likelihood[M]. New York:Chapman & Hall/CRC,2001.
[4] 李乃医,李永明,韦盛学. 缺失数据下非线性分位数回归模型的光滑经验似然推断[J]. 统计与决策,2015(1):97-99.
[5] REN J J. Smoothed weighted empirical likelihood ratio confidence intervals for quantiles[J]. Bernoulli,2008,14(3):725-748.
[6] 张雨婷,罗双华. 纵向数据缺失且具有辅助信息的光滑经验似然估计[J]. 宝鸡文理学院学报(自然科学版),2021,41(4):9-14.
[7] 吉肖肖,张成毅,罗双华. 缺失数据和辅助信息下分位数回归的光滑经验似然[J]. 纺织高校基础科学学报,2020,33(2):70-77.
[8] 李忠桂,何书元. 分位数回归的光滑经验似然[J]. 应用概率统计,2017,33(5):497-507.
[9] LUO S H, MEI C L, ZHANG C Y. Smoothed empirical likelihood for quantile regression models with response data missing at random[J]. AStA Advances in Statistical Analysis,2017,101(1):95-116.
[10] ZHANG T, WANG L. Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response[J]. Computational Statistics & Data Analysis,2020,144:106888.
[11] ZHANG T, WANG L. Smoothed partially linear quantile regression with nonignorable missing response[J]. Journal of the Korean Statistical Society,2022,51:441-479.
[12] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing,2015,48(1):321-333.
[13] SUN J, MA Y Y. Empirical likelihood weighted composite quantiles regression with partially missing covariates[J]. Journal of Nonparametric Statistics,2017,29(1):137-150.
[14] LI X Y, YUAN J Q. Empirical likelihood method for quantile with response data missing at random[J]. Acta Mathematicae Applicatae Sinica,2012,28(2):265-274.
[15] 郭东林. 缺失数据下几类回归模型的估计方法与理论[D]. 北京:北京工业大学,2017.
[16] 鞠婷婷. 缺失数据下基于经验似然的变系数分位数回归统计推断[D]. 长春:长春工业大学,2018.
[17] LUO S H, ZHANG C Y, WANG M H. Composite quantile regression for varying coefficient models with response data missing at random[J]. Symmetry,2019,11(9):1065-1083.
[18] WHANG Y J. Smoothed empirical likelihood methods for quantile regression models[J]. Econometric Theory,2006,22(2):173-205.
[19] XUE L G. Empirical likelihood confidence intervals for response mean with data missing at random[J].Scandinavian Journal of Statistics,2009,36(4):671-685.
[20] WONG H, GUO S J, CHEN M, et al. On locally weighted estimation and hypothesis testing of varying-coefficient models with missing covariates[J]. Journal of Statistical Planning & Inference,2009,139(9):2933-2951.
[21] QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics,1994,22(1):300-325.
Smoothed Empirical Likelihood Method of General Linear Composite
Quantile Regression Model with Missing Response DataHUANG Wanjuan1,LUO Shuanghua1,ZHANG Chengyi2(1. School of Science, Xian Polytechnic University, Xian 710048, Shanxi;
2. School of Economics and Finance, Xian Jiaotong University, Xian 710049, Shanxi)
Abstract:Since the loss function of quantile regression model with missing response data is not smooth, the efficiency of parameter estimation is not high. In order to improve the efficiency of parameter estimation, the smoothed empirical log likelihood ratio of composite quantile regression model is firstly proposed in this paper, including the smoothed empirical log likelihood ratio of composite quantile regression model with complete data, weighted data and imputation, and the constructed smoothed empirical log likelihood ratio is proved to obey the asymptotic Chi-square distribution under certain conditions. Secondly, the confidence interval of regression parameter is constructed according to the likelihood ratio, and the empirical likelihood estimator is proved to be asymptotically normality. Finally, the performance of the estimators is assessed by numerical simulation.
Keywords:missing data; composite quantile regression model; smoothed empirical log likelihood ratio; asymptotically normality〖=〗
2020 MSC:62E20
(編辑 刘刚)