旋转浅水和欧拉方程的渐近极限

2023-06-21 03:59:50刘梦雨杨建伟

刘梦雨 杨建伟

摘要:基于测度值解的概念,研究了旋转浅水和欧拉方程的渐近极限问题.在好初值条件下,证明了当弗劳德数趋近于零时,旋转浅水和欧拉方程的测度值解收敛于旋转湖方程的经典解.

关键词:旋转浅水和歐拉方程; 测度值解; 渐近极限

中图分类号:O175.2 文献标志码:A 文章编号:1001-8395(2023)05-0623-05

1预备知识

2引理和主要结果

3主要结论的证明

参考文献

[1] WU K C. Low Froud number limit of the rotating shallow water and Euler equation[J]. Proc Amer Math Soc,2014,142(3):939-947.

[2] LEVERMORE C D, OLIVER M, TITI E S. Global well-posedness for models of shallow water in a basin with a varying bottom[J]. Indiana Univ Math,1996,45(2):479-510.

[3] CHENG P, YANG J W, DAN B. Rate of convergence from the rotating Euler and shallow water equation to the rotating lake equations[J]. Bound Value Problem,2017,2017:1-9.

[4] PERNA D R J. Measure-valued solutions to conservation laws[J]. Arch Ration Mech Anal,1985,88(3):223-270.

[5] GWIAZDA P, SWIERCZEWSKA-GWIAZDA A, WIEDEMANN E. Weak-strong uniqueness for measure-valued solutions of some compressible fluid models[J]. Nonlinearity,2015,28(11):3873-3890.

[6] FEIREISL E, GWIAZDA P, SWIERCZEWSKA-GWIAZDA A, et al. Dissipative measure-valued solutions to the compressible Navier-Stokes system[J]. Calc Var Part Diff,2016,55(6):141-160.

[7] BREZINA J, FEIREISL E. Measure-valued solutions to the complete Euler system[J]. J Math Soc Japan,2018,69:1227-1245.

[8] FEIREISL E, KLINGENBERG C, MARKFELDER S. On the low Mach number limit for the compressible Euler system[J]. SIAM J Math Anal,2019,51(2):1496-1513.

[9] BREZINA J, FEIREISL E, NOVOTNY A. Stability of strong solutions to the Navier-Stokes-Fourier system[J]. SIAM J Math Anal,2020,52(2):1761-1785.

[10] HUANG B K. On the existence of dissipative measure-valued solutions to the compressible micropolar system[J]. J Math Fluid Mech,2020,22(59):1-16.

Asymptotic Limit of the Rotating Shallow Water and Euler EquationsLIU Mengyu,YANG Jianwei(School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan)

Abstract:In this paper,  we study the asymptotic limit of the rotating shallow water and Euler equations based on the concept of measure-valued solutions. In the case of well-prepared initial data, we prove that the measure-valued solutions of the rotating shallow water and Euler equations converge to the classical solution of the rotating lake equations when the Froued number tends to zero.

Keywords:rotating shallow water and Euler equations; measure-valued solutions; asymptotic limit

2020 MSC:35B40; 35D30

(编辑周俊)