朱士信
摘要:量子纠错码是实现量子通信和量子计算的有效编码方案,如何构造高性能的量子纠错码是量子纠错理论最基本的研究课题之一.量子常循环码具有良好的代数结构,可以通过量子线性移位寄存器进行编译,在未来量子通信系统中有着广泛的应用前景.本综述将介绍量子常循环码的构造方法,揭示经典常循环码与量子纠错码之间的联系,阐述经典常循环码在量子MDS码和纠缠辅助量子MDS码中的应用.
关键词:常循环码; 量子码; 量子MDS码; 纠缠辅助量子码A
中图分类号:O236.2 文献标志码:文章编号:1001-8395(2023)05-0569-12
20世纪80年代,人们发现利用量子物理的并行计算机制可以极大地加快计算和通信速度,量子信息理论获得迅速发展,量子信息理论和技术成为信息领域研究的热门课题.近20年来,以量子力学为基础的量子通信和计算不仅在技术上取得了快速发展,而且在理论上不断获得突破,展现出广阔的应用前景.量子通信和量子计算在安全、速度、计算、搜索等方面相比经典数字通信具有巨大优势.然而,存储量子信息的物理系统不可避免会与环境相互作用,受到噪音的干扰或影响而失去量子特性,与经典数字通信相似,出现量子比特错误.同时,在量子通信和量子计算中还存在消相干现象,破坏了量子信息在传输过程中量子态的相干叠加,致使量子信息和量子计算发生错误.因此,可靠的量子通信和量子计算要求对逻辑量子比特进行编码、译码和纠错,并在纠错保护下进行量子逻辑门操控,从而实现量子信息的有效传输.量子纠错码被证明是克服量子错误和消相干最有效的方法,能切实保障量子通信和量子计算的可靠性和安全性[1-2].
目前,第五代移动通信系统5G逐渐走向商业化,5G的发展源于用户对移动数据日益增长的需求.美国主导的LDPC码、中国华为公司主导的Polar码分别被采纳为5G eMBB场景的数据信道编码方案和控制信道编码方案.无论是Turbo码、LDPC码,还是Polar码,都属于有限域上经典的纠错编码.进入21世纪,全球科技创新进入空前密集活跃时期,量子信息技术也成为当今世界科技实力和创新能力的一大表现,正在逐步影响信息产业发展和经济发展方向,世界正在由数字信息时代步入量子信息时代,而量子信息和量子计算必将成为这一时代的核心技术和科技竞争焦点.
由于量子信道的错误率会限制可执行的量子信息计算和传输长度.因此,如果要进行高效可靠的量子通信和量子计算,首先必须解决好量子纠错问题,“纠错”是量子技术面临的最大挑战.从这个意义上说,量子通信和量子计算依赖于量子纠错编码.解决纠错问题是实现量子信息传输和量子计算的关键.量子纠错码是目前克服量子信道干扰最有效的编码方案,它不仅能实现量子信息在带有噪音的量子信道上可靠传输,而且能保证量子计算的有效进行.随着量子传输的实现,构造高性能的量子纠错码具有十分重要的理论意义和应用价值.量子常循环码作为一类重要的量子纠错码,具有丰富的代数结构,可以通过量子移位寄存器进行编译,它的发展对量子信息传输和量子并行计算的发展具有重要意义.
1基本概念
2量子常循環码
3量子常循环BCH码
经典的BCH码是一类循环码,其参数可以通过设计距离进行界定,成为构造量子码的首选码源.文献[8,26]给出了量子BCH码的编码和译码方法.文献[27-28]给出了欧几里得对偶包含BCH码存在的充要条件,并构造了量子BCH码.2007年,Aly等[29]确定了欧几里得和厄密特对偶包含BCH码的最大设计距离,建立了量子BCH码的一般理论框架,其结果也成为量子码性能的参照标准.通常,利用有限域上常循环码构造量子码,需要确定常循环码满足对偶包含性的最大设计距离.一个主要目标是选取恰当的定义集,使得对偶包含码的最大设计距离尽可能大,由此产生的量子码具有更强的纠错能力.文献[30-32]研究了各种长度的厄密特对偶包含码,由此构造了一系列量子BCH码.对于一般的常循环码,欧几里得对偶包含码仅存在循环码或负循环码,而厄密特对偶包含码存在其他类型的常循环码.因而,量子常循环BCH码受到了极大的关注.文献[33-36]研究了各种类型量子常循环码的参数.下面主要介绍文献[33]的工作.
4纠缠辅助量子MDS码
量子稳定子码通过某种内积下对偶包含码进行构造,这极大地限制了量子纠错码的发展.早在2002年,Bowen [37] 指出在量子信道两端预先共享纠缠态c,可以提高信道容量.2006年,Brun等[38]证明了收发端在预先共享纠缠态c的情况下,可以利用任意经典线性码进行量子信息传输并纠错,由此建立了纠缠辅助稳定子码编码方案.这一重要发现标志着纠缠辅助量子码这一新的理论分支的诞生.纠缠辅助量子码可以直接利用经典的线性码进行量子信息传送,克服了标准量子码对偶包含条件的限制,这不仅使得所有的经典线性码得以量子化,还大大简化了量子纠错码的构造理论.本节介绍纠缠辅助量子码的相关概念和构造方法,重点介绍纠缠辅助量子MDS码方面的工作进展.
5总结
本文从代数结构、构造方法、纠错性能等方面详细介绍了量子常循环码的研究成果,结合实例阐述了量子常循环码、量子MDS码和纠缠辅助量子MDS码的构造方法.量子纠错理论在近30年获得了重大突破和快速发展,已成为计算机科学、通信、物理和数学的一个交叉前沿领域.随着量子传输与量子计算在实验室中不断得以实现,亟待建立系统而有效的量子编码和译码方案.量子常循环码是经典常循环码的量子推广,目前理论研究表明,量子常循环码具有优良的纠错性能,并且可以使用量子移位寄存器进行编译.此外,量子常循环码具有码长灵活和类型丰富的特点,理论上自然成为量子传输和量子计算中首选的纠错码源.如何真正在技术上实现量子常循环码在量子信道中进行信息传输并纠错,从而降低误码率,是量子常循环码应用的关键,这需要从量子比特测量和量子编码电路等方面对量子常循环码开展深入的研究.
參考文献
[1] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A,1995,52(4):2493-2496.
[2] STEANE A M. Multiple particle interference and quantum error correction[J]. Proceedings of the Royal Society A,1996,452(1):2551-2577.
[3] MACWILLIAMS F J, SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam:North-Holland,1977.
[4] KRISHNA A, SARWATE D V. Pseudocyclic maximum-distance-separable codes[J]. IEEE Trans Inform Theory,1990,36(4):880-884.
[5] DINH H Q, LPEZ-PERMOUTH S R. Cyclic and negacyclic codes over finite chain rings[J]. IEEE Trans Inform Theory,2004,50(8):1728-1744
[6] HUFFMAN W C, PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge:Cambridge University Press,2003.
[7] KAI X S, ZHU S X, LI P. Constacyclic codes and some new quantum MDS codes[J]. IEEE Trans Inform Theory,2014,60(4):2080-2086.
[8] GRASSL M, BETH T. Cyclic quantum error-correcting codes and quantum shift registers[J]. Proceedings of the Royal Society A,2000,456(2003):2689-2706.
[9] 冯克勤,陈豪. 量子纠错码[M]. 北京:科学出版社,2010.
[10] RAINSE M. Nonbinary quantum codes[J]. IEEE Trans Inform Theory,1999,45(6):1827-1832.
[11] KETKAR A, KLAPPENECKER A, KUMAR S, et al. Nonbinary stabilizer codes over finite fields[J]. IEEE Trans Inform Theory,2006,52(11):4892-4916.
[12] CALDERBANK A R, RAINS E R, SHOR P W, et al. Quantum error correction via codes over GF(4)[J]. IEEE Trans Inform Theory,1998,44(7):1369-1387.
[13] AHIKHMIN A, KNILL E. Nonbinary quantum stabilizer codes[J]. IEEE Trans Inform Theory,2001,47(7):3065-3072.
[14] STEANE A M. Enlargement of Calderbank-Shor-Steane quantum codes[J]. IEEE Trans Inform Theory,1999,45(7):2492-2495.
[15] LING S, LUO J Q, XING C P. Generalization of Steanes enlargement construction of quantum codes and applications[J]. IEEE Trans Inform Theory,2010,56(8):4080-4084.
[16] GRASSL M, GEISELMANN W, BETH T. Quantum Reed-Solomon codes[C]//Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Berlin:Springer,1999:231-244.
[17] FENG K Q. Quantum codes [[6,2,3]]p and [[7,3,3]]p(p≥3) exist[J]. IEEE Trans Inform Theory,2002,48(8):2384-2391.
[18] SARVEPALLI P K, KLAPPENECKER A. Nonbinary quantum Reed-Muller codes[C]//Proceedings of International Symposium Information Theory. Adelaide:IEEE,2005:1023-1027.
[19] GRASSL M, BETH T, RTTLER M. On optimal quantum codes[J]. International Journal Quantum Information,2004,2(1):757-775.
[20] LI Z, XING L J, WANG X M. Quantum generalized Reed-Solomon codes:unified framework for quantum maximum-distance-separable codes[J]. International Journal of Quantum Information,2008,77(1):012308.
[21] JIN L F, LING S, LUO J Q, et al. Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes[J]. IEEE Trans Inform Theory,2010,56(9):4735-4740.
[22] CHEN B C, LING S, ZHANG G H. Application of constacyclic codes to quantum MDS codes[J]. IEEE Trans Inform Theory,2015,61(3):1474-1484.
[23] ZHANG T, GE G N.Some new classes of quantum MDS codes from constacyclic codes[J]. IEEE Trans Inform Theory,2015,61(9):5224-5228.
[24] WANG L Q, ZHU S X. New quantum MDS codes derived from constacyclic codes[J]. Quantum Information Processing,2015,14(3):881-889.
[25] LI S X, XIONG M S, GE G N. Pseudo-cyclic codes and the construction of quantum MDS codes[J]. IEEE Trans Inform Theory,2016,62(4):1703-1710.
[26] GRASSL M, BETH T. Quantum BCH codes[C]//Proceedings of International Symposium on Theoretical Electrical Engineering. Magdeburg:IEEE,1999:207-212.
[27] COHEN G, ENCHEVA S, LITSYN S. On binary constructions of quantum codes[J]. IEEE Trans Inform Theory,1999,45(7):2495-2498.
[28] MA Z, LU X, FENG K Q, et al. On non-binary quantum BCH codes[C]//The 3rd International Conference on Theory and Applications of Models of Computation. Berlin:Springer-Verlag,2006:675-683.
[29] ALY S A, KLAPPENECKER A, SARVEPALLI P K. On quantum and classical BCH codes[J]. IEEE Trans Inform Theory,2007,53(3):1183-1188.
[30] LA GUARDIA G G. Constructions of new families of nonbinary quantum codes[J]. Physical Review A,2009,80(4):042331.
[31] LA GUARDIA G G. On the construction of nonbinary quantum BCH codes[J]. IEEE Trans Inform Theory,2014,60(3):1528-1535.
[32] LI R H, ZUO F, LIU Y, et al. Hermitian dual-containing BCH codes and construction of new quantum codes[J]. Quantum Inform Computation,2013,12(1/2):0021-0035.
[33] WANG L Q, SUN Z H, ZHU S X. Hermitian dual-containing narrow-sense constacyclic BCH codes and quantum codes[J]. Quantum Information Processing,2019,18(10):323.
[34] YUAN J, ZHU S X, KAI X S, et al. On the construction of quantum constacyclic codes[J]. Designs, Codes and Cryptography,2017,85(1):179-190.
[35] LIU Y, LI R H, LV L D, et al. A class of constacyclic BCH codes and new quantum codes[J]. Quantum Information Processing,2017,16(3):66.
[36] WANG J L, LI R H, LIU Y, et al. Some negacyclic BCH codes and quantum codes[J]. Quantum Information Processing,2020,19(2):323.
[37] BOWEN G. Entanglement required in achieving entanglement-assisted channel capacities[J]. Physical Review A,2002,66(5):052313.
[38] BRUN T, DEVETAK I, HSIEH M. Correcting quantum errors with entanglement[J]. Science,2006,314(5798):436-439.
[39] LAI C Y, BRUN T A, WILDE M M. Duality in entanglement-assisted quantum error correction[J]. IEEE Trans Inform Theory,2013,59(6):4020-4024.
[40] ALLAHMADI A, ALKENANI A, HIJAZI R, et al. New constructions of entanglement-assisted quantum codes[J]. Cryptography and Communications,2022,14(1):15-37.
[41] MARKUS G. Entanglement-assisted quantum communication beating the quantum Singleton bound[J]. Physical Review A,2021,103(2):L020601.
[42] WILDE M M, BRUN T A. Optimal entanglement formulas for entanglement-assisted quantum coding[J]. Physical Review A,2008,77(6):64302.
[43] CARLOS G, FERNANDO H, RYUTAROH M, et al. Correction to:entanglement-assisted quantum error-correcting codes over arbitrary finite fields[J]. Quantum Information Processing, 2021, 20(6):116.
[44] KENZA G, SOMPHONG J, AARON G T. Constructions of good entanglement-assisted quantum error correcting codes[J]. Designs, Codes and Cryptography,2018,86(1):121-136.
[45] 李瑞虎,許根,吕良东. BCH码的定义集分解及应用[J]. 空军工程大学学报(自然科学版),2013,14(2):86-89.
[46] CHEN J Z, HUANG Y Y, FENG C H, et al. Entanglement-assisted quantum MDS codes constructed from negacyclic codes[J]. Quantum Information Processing,2017,16(12):303.
[47] LIU Y, LI R H, LV L D, et al. Application of constacyclic codes to entanglement-assisted quantum maximum diatance separable codes[J]. Quantum Information Processing,2018,17(8):210.
[48] CHEN X J, ZHU S X, KAI X S. Entanglement-assisted quantum MDS codes constructed from constacyclic codes[J]. Quantum Information Processing,2018,17(10):273.
[49] QIAN J F, ZHANG L N. On MDS linear complementary dual codes and entanglement-assisted quantum codes[J]. Designs, Codes and Cryptography,2018,86(7):1565-1572.
[50] PANG B B, ZHU S X, LI F L,et al. New entanglement-assisted quantum MDS codes with larger minimum distance[J]. Quantum Information Processing,2020,19(7):207.
[51] WANG J L, LI R H, L J J, et al. Entanglement-assisted quantum error correction codes with length n=q2+1[J]. Quantum Information Processing,2019,18(9):292.
Research on Construction of Quantum Constacyclic CodesZHU Shixin(School of Mathematics, Hefei University of Technology, Hefei 230601, Anhui)Quantum error-correcting codes are an effective coding scheme that can realize quantum communication and computation. It is one of the most basic topics to construct quantum error-correcting codes with high error-correcting capability. Quantum constacyclic codes have good algebraic structure, which can be encoded and decoded by quantum linear shift register. Hence, they have wide application prospect in quantum communication system in the future. In this review paper, we introduce the methods of the construction of quantum constacyclic codes and reveal the relationship between classical constacyclic codes and quantum error-correcting codes. We mainly elaborate some applications of classical constacyclic codes to quantum MDS codes and entanglement-assisted quantum MDS codes.constacyclic codes; quantum codes; quantum MDS codes; entanglement-assisted quantum codes
(編辑陶 志宁)