冯帅霞 徐莹 韩涵
摘要:
过氧化物酶体增殖物激活受体(PPAR)是细胞核雌激素受体家族成员,参与多种体内生理病理过程,在细胞代谢、炎症及癌症等方面发挥重要作用,目前已知PPAR受体分3种亚型,分别为α、β/δ和γ。研究发现PPAR在肝脏中高度表达,广泛参与肝脏能量代谢、氧化应激、炎症等多种生理病理活动,与肝脏疾病的进展密切相关。本文就PPAR在病毒性肝炎、代谢相关脂肪性肝病、胆汁淤积性肝病、肝纤维化、原发性肝癌等常见肝脏疾病中的作用及其在肝脏疾病治疗中的应用现状作一综述。
关键词:
过氧化物酶体增殖物激活受体; 肝疾病; 炎症
基金项目:
国家自然科学基金(82173946); 上海市自然科学基金(21ZR1460500); 国家自然科学基金青年项目(82004162); 上海市青年科技英才扬帆计划(20yf1449500)
Role and potential significance of peroxisome proliferator-activated receptors in liver diseases
FENG Shuaixia, XU Ying, HAN Han. (School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)
Corresponding authors:
HAN Han, pashanhan@126.com (ORCID:0000-0001-6454-876X); XU Ying,xuying.911@163.com (ORCID:0000-0002-4645-3094)
Abstract:
Peroxisome proliferator-activated receptors (PPAR) are members of the nuclear estrogen receptor family, and they are involved in a variety of physiological and pathological processes in the human body and play important roles in cellular metabolism, inflammation, and cancer. At present, there are three known subtypes of PPAR, i.e., α, β/δ, and γ. Studies have shown that PPARs are highly expressed in the liver and are widely involved in various physiological and pathological activities such as liver energy metabolism, oxidative stress, and inflammation, and they are also closely associated with the progression of liver diseases. This article reviews the role of PPAR in common liver diseases such as viral hepatitis, metabolic associated fatty liver disease, cholestatic liver disease, liver fibrosis, and primary liver cancer, and the current status of their application in the treatment of liver diseases.
Key words:
Peroxisome Proliferator-Activated Receptors; Liver Diseases; Inflammation
Research funding:
National Natural Science Foundation (82173946); Shanghai Natural Science Foundation of China (21ZR1460500); Youth Project of National Natural Science Foundation of China (82004162); Shanghai Youth Science and Technology Talents Sail Program (20yf1449500)
1 過氧化物酶体增殖物激活受体 (PPAR)的分类结构与其生理作用
PPAR是一种配体激活型转录因子,该受体主要分为N端区(A/B区)、居中高度保守的DNA结合区(C区)和C端的激素结合区(E区)。此类受体可与维甲类X受体结合形成异源二聚体,当受体被激活后该复合体会通过特定的位点,形成特定的氧化物酶体增殖物反应元件发挥作用。PPAR分3种亚型,分别为α、β/δ和γ。其中PPARα在肝脏中高度表达,广泛参与体内能量代谢、氧化应激、炎症等多种生物活动。γ类在各种脂肪组织中广泛表达,参与脂质代谢活动。而PPARβ则被发现在抑制炎症反应发生方面发挥作用。研究[1-3]发现PPAR对于多种疾病发挥作用,例如高血压、冠心病、心肌梗死、缺血性脑卒中等。近年来有研究表明PPAR可以改善各种原因引起的肝脏疾病,例如通过调节脂质代谢改善肝脂质积累状况、加快脂肪酸氧化、抑制炎症反应等方式改善脂肪性肝病,此外还可以通过调节胆汁酸改善胆汁淤积肝病。基于上述情况,笔者针对PPAR在肝脏疾病中的作用及潜在治疗意义作一综述。
2 PPAR与肝脏疾病
2.1 PPAR与病毒性肝炎 全球目前有3.54亿HBV/HCV感染者,每年约有110万人死于肝炎病毒感染及其相关疾病,其中96%由HBV/HCV感染引起。通过对比细胞上清中HBsAg和HBeAg水平,发现激活PPARα可促进HBV复制[4],而PPARα的反义序列PPARα-2则可以抑制HBV的复制[5]。此外研究[6-7]发现HCV患者PPARα的表达量明显低于正常人群,提示活化PPARα可以改善HCV的感染,确定PPARα是HCV感染发病的一种机制。另有体内实验[8]表明长期使用PPARα激动剂可促使HCV小鼠肝脏发生脂肪变性。另有研究[9]指出PPARγ水平与HBV表达水平呈正相关,PPARγ可以通过调控操控其下游蛋白脂联素抑制HBV基因的复制。Wakui等[9]对比HepG2细胞上清中HBsAg和HBeAg水平,发现加有PPARγ激动剂罗格列酮的细胞上清中HBV抗原量明显减少,表明罗格列酮在体外对于HBV复制具有抑制作用,以上均提示PPARγ在一定程度上对HBV有治疗作用。
2.2 PPAR与非酒精性脂肪性肝病(NAFLD) NAFLD的明确诊断至今仍需排除过量饮酒等其他原因所导致的慢性肝病,常伴随超重或肥胖[10]、2型糖尿病[11-12]、代谢紊乱等,全球患病率为25%,治疗主要通过干预和降低肝脂肪含量,减轻脂肪性肝炎等。目前大量研究表明PPAR本身在脂质积累和调节炎症方面发挥作用,运用PPAR及其相关激动剂治療NAFLD可能是一种有效的途径。
成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)是一种糖脂代谢调节因子,其水平的高低在一定程度上能够反映肝脂肪化程度,研究[13-14]发现PPARα通过调节FGF21水平、缺氧诱导因子1α(hypoxia-inducible factor 1-Alpha,HIF-1α)减轻肝脏的脂质沉积和肝细胞脂质积累。法尼醇X受体(FXR)作为胆汁酸调节受体,被PPARα激活后通过增加脂肪酸氧化,降低甘油三酯合成,减少肝脏脂质堆积,表明PPARα对于NAFLD有较好的治疗作用。除PPARα本身对NAFLD有治疗作用外,其激动剂具有抑制肥胖相关蛋白的表达,降低肝细胞中脂质累积,改善NAFLD肝脏的脂质沉积[15],并抑制炎症小体活化等作用[16]。He等[14]通过构建的NAFLD细胞模型发现PPARα表达量的减少可导致IL-6、TNF-α等促炎因子分泌增加,加重肝损伤程度。刘林等[17]发现非酒精性脂肪性肝炎(NASH)大鼠肝脏中PPARα的表达量较正常组少,并指出PPARα基因表达减弱可引起脂质代谢失衡并参与NASH进展。PPARγ在肝脏中也能较好调节脂质沉积,多项研究[18-20]表明PPARγ通过调控下游基因,减少甘油三酯在细胞中的积累以及增加胆固醇外流等方式将脂肪从肝组织中转移出去,使肝组织脂肪变性受到抑制,减少肝细胞损伤。此外PPARγ还通过多种方式调节炎症因子[21-22]改善NAFLD的炎症程度,包括终止NF-κB P65因子的转录,下调IL-6、TNF-α等因子减轻巨噬细胞对肝脏的炎症浸润,调节IL-4、IL-10、IL-2、IFN等炎症因子改善炎症情况。有研究[23]指出促进PPARα、PPARγ表达可降低TNF-α水平,减轻NASH引起的肝脏炎性病变。针对PPARδ类受体的相关研究[24-25]指出,PPARδ可以提高小鼠高密度脂蛋白水平,降低NAFLD小鼠血清中脂质水平,明显改善肝脏病理性损伤,并通过抑制Toll样受体4/髓分化因子88/NF-κB信号通路逆转NAFLD的进展。
2.3 PPAR与胆汁淤积性肝病 胆汁淤积性肝病是由于胆汁酸不能主动经胆小管排至肠腔而在肝内淤积所引起的病症。由于胆汁酸本身具有一定的毒性,大量高浓度的胆汁酸保留在肝细胞内可引起内质网应激、线粒体功能障碍、促进凋亡因子的释放引发炎症症状,导致肝细胞坏死引起肝脏器质性损伤。有研究[26]指出PPARα通过抑制CYP7A1的转录减少胆汁酸合成,其激动剂调控CYP7B1酶实现对于胆汁酸的调节,改善肝内胆汁淤积。MBT1805作为PPAR激动剂可以影响胆酸合成,改善α-萘异硫氰酸酯诱导小鼠的胆汁淤积性肝损伤[27]。除通过调节胆汁酸改善胆汁淤积性肝病之外,也有研究发现PPAR可以通过抑制c-Jun氨基末端激酶(JNK)通路、减少炎症因子转换来调节胆汁淤积性肝病。Dai等[28]对比PPARα激动剂和JNK抑制剂的小鼠发现激活PPARα可抑制JNK信号通路保护胆汁淤积诱导的肝损伤,降低氧化应激反应,并观察到PPARγ能抑制巨噬细胞向M2型极化,加重胆汁淤积性肝病的炎症情况。
2.4 PPAR与肝纤维化 肝纤维化是多种慢性肝病的共同病理过程,肝内各种炎性因子的刺激及相关信号通路的激活导致肝星状细胞(HSC)活化,大量的胶原沉积,导致肝纤维化的发生,其中抑制HSC活化是缓解肝纤维化进程的关键因素。研究[29]发现PPARγ通过增加水通道蛋白3水平、降低激活蛋白-1水平抑制HSC的活化增殖,从而抑制肝纤维化的进展。体外实验[30]发现PPARγ激动剂罗格列酮可抑制TGF-β1活性,活化HSC调节肝纤维化程度。此外对比正常肝脏与肝纤维化肝脏中PPARγ的表达量发现,PPARγ表达量越低则肝纤维化程度越严重[31],提示PPARγ在肝纤维化过程中可能起着重要作用。此外PPARγ可通过调控NF-κB、Janus激酶2/信号转导和转录激活因子3(STAT3)信号通路降低炎症因子的表达,缓解小鼠肝损伤情况。P38丝裂原活化蛋白激酶可被炎症因子激活,调节PPARγ表达,在急慢性肝脏炎症期间促进HSC增殖,进一步加强肝纤维化程度[32-33]。另有报道[34]指出PPAR通过调节长链酰基辅酶A合成酶1直接或间接参与肝纤维化进展。
2.5 PPAR与原发性肝癌 原发性肝癌发病隐秘,发展迅速,难以根治,容易复发,是我国目前第3大肿瘤致死病因,其中肝细胞癌占85%~95%。PPAR被发现有明显抗癌作用。研究[35]发现下调肝细胞癌组织中PPARα的表达量可以影响肝细胞癌的脂质代谢过程,提示PPARα可能与肝细胞癌发展相关。多项研究[36-37]指出PPARα激动剂通过增加抗氧化酶、减少氧化应激和细胞凋亡等活性反应,降低能量代谢,改善癌症引起的肝损伤。酸化是肿瘤微环境的主要特征,有助于肿瘤的进展,在酸性环境下磷脂酰肌醇-3-羟基激酶/蛋白激酶B(AKT)信号通路被激活,促进硬脂酰辅酶A去饱和酶与PPARα结合,显著触发脂肪酸合成导致肝肿瘤的发生[38]。有学者[39]指出PPARγ也参与肝细胞癌发展,且表达量越高,肝细胞癌的分化程度越低,肿瘤的恶性程度越高,研究[40]发现通过增加糖酵解途径激活PPARγ将促进肝细胞癌的增殖、侵袭和迁移,加快肝细胞癌进展。同时研究[41]表明提高PPARγ,降低NF-κB、含NLR家族Pyrin域蛋白3水平,会使得肝细胞癌中含Ⅲ型纤连蛋白域蛋白5表达升高,诱导巨噬细胞M2表型极化促进肝细胞癌生长。另外降低PPARγ表达后,PPARγ共激活剂PPARγ共激活因子-1α因子通过线粒体生物影响能量代谢,改善肝癌引起的肝损伤状况。PPARβ在肝细胞癌症组织中有所表达,研究指出PPARβ通过3-磷酸肌醇依赖性蛋白激酶-1/AKT/糖原合成酶激酶3β通路促进肝细胞癌进展[42],而PPARβ失活使得血清/糖皮质激素调节蛋白激酶1水平降低,抑制肝脏癌变。此外有研究[43]发现PPARβ激动剂可以抑制 Hepa1-6细胞增殖,减少肝癌细胞的生长,说明PPARβ激动剂具有降低肝癌细胞增殖潜力。为更好了解PPAR与肝细胞癌之间的关系,对肝细胞癌的预后有较好的预测,研究者收集肝细胞癌的mRNA数据和临床信息,发现PPAR信号通路中基质金属蛋白酶1、羟甲基戊二酰辅酶A合酶2、溶质载体家族27成员5的组合可以有效应用于预测肝细胞癌的预后[44],进一步为肝细胞癌的预防发展提供新的思路与方向。
2.6 PPAR与药物性肝炎 药物性肝炎常由药物或其他代谢产物引起的肝脏炎症性损伤,在生物层面上表现出氧化应激、炎症浸润等现象。对乙酰氨基酚作为一种临床常用药物其造成药物性肝炎的机制主要是氧化应激导致的。研究[45]指出抑制PPARα可以上调IL-6/STAT3通路减少氧化应激,保护对乙酰氨基酚诱导的肝损伤,除此之外PPARα和PPARγ均可以通过降低c-ROS癌基因1的表达缓解氧化应激,改善对乙酰氨基酚诱导的药物性肝炎。还有研究[46]发现混合真菌多糖通过上调PPARα增强对细胞/抗氧化剂失衡、促炎因子的调节,降低毒性标志物AST、ALT的指标,实现肝损伤的预防。三碘甲状腺原氨酸(T3)具有强大的肝脏保护作用,近期研究[47]发现T3可以激活PPARα,促进细胞增殖、减少氧化应激,减轻对乙酰氨基酚诱导的肝细胞损伤。超氧化物歧化酶(SOD)具有抗氧化作用,PPARα激动剂通过增强SOD活性使得SOD表达增加,抑制氧化应激,减少细胞凋亡从而改善肝损伤[48]。另外PPARγ激动剂GW0742可以抑制肌醇依赖酶1α磷酸化来减弱内质网应激介导的细胞凋亡途径,减少线粒体氧化应激[36]。
2.7 PPAR与其他肝脏疾病 PPAR除了在以上几种常见肝脏疾病中发挥重要作用之外,在其他肝脏疾病中也发挥作用。例如PPARα在肝肿大和肝再生方面发挥着重要作用,不过其机制尚未清楚,但有学者[49]指出PPARα通过激活YAP-TEAD信号通路实现调节肝脏大小和肝再生的功能。另有学者[50]在肝切除术诱导的肝再生研究中发现,PPARα通过调节细胞周期和脂质代谢来促进切除后肝再生。
3 结论与展望
综上所述,PPAR及其激动剂参与肝脏疾病治疗发挥作用的方式主要通过减少脂质沉积、调节炎症反应的手段实现的。PPAR作为肝脏疾病治疗的一个新靶点,选择性使用不同类型的PPAR及相关激动剂可为肝脏疾病的治疗提供新的方向和思路。例如PPAR及其激动剂对于MAFLD相关因素的靶点在于胆汁酸调控、甘油三酯降低和炎症。而肝纤维化相关因素的靶点则包括HSC活化、炎症。目前,部分PPAR及相关激动剂已進入临床研究阶段,但因不良反应而停止研究的情况时有发生,尚很多亟待解决的难题。就目前研究发现,PPARβ亚型的研究较其余两种亚型较为匮乏,PPAR在肝脏疾病中的作用机制仍需进一步研究明确,为PPAR在肝脏疾病辅助诊断及靶向治疗的应用提供更多理论依据。
利益冲突声明:
本研究不存在任何利益冲突。
作者贡献声明:冯帅霞负责文献检索,撰写文章;徐莹指导文章撰写,修改文章关键内容;韩涵拟定写作思路并最终定稿。
参考文献:
[1]
WU JY, GAO JM, GONG QH. Advances in effect of peroxisome roliferators-activated receptors inischemic stroke[J]. Chin Pharmacol Bull, 2022, 38(5): 655-659. DOI: 10.12360/CPB202104086.
吴玉佳, 高健美, 龚其海. 过氧化物酶体增殖物激活受体PPAR在缺血性脑卒中作用的研究进展[J]. 中国药理学通报, 2022, 38(5): 655-659. DOI: 10.12360/CPB202104086.
[2]WEI SX, SUN H. Action mechanism of peroxisome proliferator-activated receptor agonist in myocardial infarction[J]. Adv Cardiovasc Dis, 2021, 42(12): 1110-1113. DOI: 10.16806/j.cnki.issn.1004-3934.2021.12.013.
魏士雄, 孙赫. 过氧化物酶体增殖物激活受体激动剂在心肌梗死中的作用机制研究进展[J]. 心血管病学进展, 2021, 42(12): 1110-1113. DOI: 10.16806/j.cnki.issn.1004-3934.2021.12.013.
[3]WU JY, LI LL, LI RH. Association and interaction among TGF-β/Wnt-β-catenin/PPARs axis in hypertension and hypertensive trget organ damage[J]. Med Recapitulate, 2021, 27(20): 3969-3976. DOI: 10.3969/j.issn.1006-2084.2021.20.004.
吴佳芸, 李玲玲, 李瑞菡. TGF-β/Wnt-β-catenin/PPARs轴在高血压及其靶器官损害中的关联与交互作用[J]. 医学综述, 2021, 27(20): 3969-3976. DOI: 10.3969/j.issn.1006-2084.2021.20.004.
[4]XIE BJ, GUO JJ, ZHANG Y. Peroxisome proliferator-activated recrptor alpha regulates HBV minichromosome remodeling and viral replication[J]. J Chongqing Med Univ, 2017, 42(7): 795-802. DOI: 10.13406/j.cnki.cyxb.001349.
谢冰珏, 郭进军, 张燕. 过氧化物酶体增殖物激活受体α(PPARα)调控HBV微染色体重塑与病毒复制[J]. 重庆医科大学学报, 2017, 42(7): 795-802. DOI: 10.13406/j.cnki.cyxb.001349.
[5]WU XT, YANG J, WANG XJ. Anti-HBV effect ldentification of antisense oligodeoxynucleotide targeting PPARα[J]. Letters in Biotechnol, 2011, 22(6): 773-776. DOI: 10.3969/j.issn.1009-0002.2011.06.005.
吴小桃, 杨静, 王学军. 抑制核转录因子PPARα的反义寡核苷酸的抗乙型肝炎病毒活性研究[J]. 生物技术通讯, 2011, 22(6): 773-776. DOI: 10.3969/j.issn.1009-0002.2011.06.005.
[6]LIN YM, SUN HY, CHIU WT, et al. Calcitriol inhibits HCV infection via blockade of activation of PPAR and interference with endoplasmic reticulum-associated degradation[J]. Viruses, 2018, 10(2): 57. DOI: 10.3390/v10020057.
[7]DHARANCY S, MALAPEL M, PERLEMUTER G, et al. Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection[J]. Gastroenterology, 2005, 128(2): 334-342. DOI: 10.1053/j.gastro.2004.11.016.
[8]TANAKA N, MORIYA K, KIYOSAWA K, et al. PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice[J]. J Clin Invest, 2008, 118(2): 683-694. DOI: 10.1172/JCI33594.
[9]WAKUI Y, INOUE J, UENO Y, et al. Inhibitory effect on hepatitis B virus in vitro by a peroxisome proliferator-activated receptor-gamma ligand, rosiglitazone[J]. Biochem Biophys Res Commun, 2010, 396(2): 508-514. DOI: 10.1016/j.bbrc.2010.04.128.
[10]
XIAO ZL, ZHENG WB, YANG J, et al. Clinical efficacy of laparoscopic sleeve gastrectomy in treatment of obesity associated nonal-coholic fatty liver disease[J]. Chin J Dig Surg, 2021, 20(9): 988-993. DOI: 10.3760/cma.j.cn115610-20210823-00411.
肖志立, 鄭文彬, 杨钧, 等. 腹腔镜袖状胃切除术治疗肥胖症相关非酒精性脂肪性肝病的临床疗效[J]. 中华消化外科杂志, 2021, 20(9): 988-993. DOI: 10.3760/cma.j.cn115610-20210823-00411.
[11]XIE J, YANG M, XING Y. Effects of liraglutide on glucose and lipid metabolism and insulin resistance in type 2 diabetes mellitus patients with non-alcoholic fatty liver disease[J/CD]. Chin J Liver Dis (Electronic Version), 2021, 13(4): 46-53. DOI: 10.3969/j.issn.1674-7380.2021.04.008.
谢晶, 杨淼, 邢英. 利拉鲁肽对2型糖尿病合并非酒精性脂肪性肝病患者糖脂代谢及胰岛素抵抗的影响[J/CD]. 中国肝脏病杂志(电子版), 2021, 13(4): 46-53. DOI: 10.3969/j.issn.1674-7380.2021.04.008.
[12]MA HL, QUAN L, JIANG S. Analysis of clinical characteristics and risk factors in patients with nonal-coholic fatty liver disease complicated with type 2 diabetes mellitus[J]. China Med Herald, 2022, 19(21): 70-73, 82.
马海林, 权莉, 蒋升. 非酒精性脂肪性肝病合并2型糖尿病患者的临床特征及危险因素分析[J]. 中国医药导报, 2022, 19(21): 70-73, 82.
[13]LUNDSEN T, HUNT MC, NILSSON LM, et al. PPARalpha is a key regulator of hepatic FGF21[J]. Biochem Biophys Res Commun, 2007, 360(2): 437-440. DOI: 10.1016/j.bbrc.2007.06.068.
[14]HE Y, YANG W, GAN L, et al. Silencing HIF-1α aggravates non-alcoholic fatty liver disease in vitro through inhibiting PPAR-α/ANGPTL4 singling pathway[J]. Gastroenterol Hepatol, 2021, 44(5): 355-365. DOI: 10.1016/j.gastrohep.2020.09.014.
[15]WEI X, ZHANG J, TANG M, et al. Fat mass and obesity-associated protein promotes liver steatosis by targeting PPARα[J]. Lipids Health Dis, 2022, 21(1): 29. DOI: 10.1186/s12944-022-01640-y.
[16]LEE HJ, YEON JE, KO EJ, et al. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2015, 21(45): 12787-12799. DOI: 10.3748/wjg.v21.i45.12787.
[17]LIU L, YAN HM, ZHANG CZ. Effect of heat-clearing and damp-draining preparation on mRNA expression of PPARα in hepatic tissue of rats with NASH[J]. Inf Tradit Chin Med, 2012, 29(2): 101-104. DOI: 10.3969/j.issn.1002-2406.2012.02.043.
劉林, 严红梅, 张赤志. 非酒精性脂肪性肝炎大鼠肝组织过氧化物酶体增殖物激活受体αmRNA表达及清热化湿法对其影响的实验研究[J]. 中医药信息, 2012, 29(2): 101-104. DOI: 10.3969/j.issn.1002-2406.2012.02.043.
[18]WEI PG, HUANG J. Effects of PPAR gamma on cholesterol metabolism and metabolism-related genes[J/CD]. J World Latest Med Inf, 2019, 19(26): 110-111. DOI: 10.19613/j.cnki.1671-3141.2019.26.054.
魏鹏歌, 黄健. PPARγ对胆固醇代谢及代谢相关基因的影响[J/CD]. 世界最新医学信息文摘, 2019, 19(26): 110-111. DOI: 10.19613/j.cnki.1671-3141.2019.26.054.
[19]MA JX, GUO JZ, CHEN HN, et al. Lsoflavones from sojae semen praeparatum regulate lipid metabolism in atherosclerotic mice through PPARγ/LXRα/ABCA1 signaling pathway[J]. Chin J Exp Med Formul, 2022, 28(11): 110-118. DOI: 10.13422/j.cnki.syfjx.20220940.
马晶鑫, 郭金洲, 陈海宁, 等. 淡豆豉异黄酮通过PPARγ/LXRα/ABCA1信号通路改善动脉粥样硬化小鼠脂质代谢的作用[J]. 中国实验方剂学杂志, 2022, 28(11): 110-118. DOI: 10.13422/j.cnki.syfjx.20220940.
[20]LI Z, HUANG ZS, LI F. Application of fenofibrate and bicyclol combination in treatment of patients with non-alcoholic fatty liver diseases and changes of hepatic PPARγ2[J]. J Pract Hepatol, 2021, 24(1): 59-62. DOI: 10.3969/j.issn.1672-5069.2021.01.016.
李钊, 黄赞松, 李繁. 非诺贝特联合双环醇治疗非酒精性脂肪性肝病患者肝组织PPARγ2 mRNA水平变化[J]. 实用肝脏病杂志, 2021, 24(1): 59-62. DOI: 10.3969/j.issn.1672-5069.2021.01.016.
[21]HOU Y, MOREAU F, CHADEE K. PPARγ is an E3 ligase that induces the degradation of NFκB/p65[J]. Nat Commun, 2012, 3: 1300. DOI: 10.1038/ncomms2270.
[22]CELINSKI K, DWORZANSKI T, FORNAL R, et al. Comparison of anti-inflammatory properties of peroxisome proliferator-activated receptor gamma agonists rosiglitazone and troglitazone in prophylactic treatment of experimental colitis[J]. J Physiol Pharmacol, 2013, 64(5): 587-595.
[23]CHEN ZY. Effect of TFHL on the expressions of PPARs in the livers of rats with nonalcoholic steatohepatitis[J]. China J Tradit Chin Med Pharma, 2012, 27(1): 78-81.
陈芝芸. 山楂叶总黄酮对非酒精性脂肪性肝炎大鼠肝脏PPARs表达的影响[J]. 中华中医药杂志, 2012, 27(1): 78-81.
[24]WANG CW. Effects of LPS on PA-induced lipid depositionin L02 cells and the role and mechanism of PPARδ, in vitro[D]. Lanzhou: Lanzhou University, 2019.
王晨薇. LPS对PA诱导的脂质沉积的肝细胞的影响及PPARδ的作用和机制的体外研究[D]. 兰州: 兰州大学, 2019.
[25]HUANG W, PAN J, FU H. Peroxidase body growth activated receptor delta (PPAR delta) regulate glucolipid metabolism inhibiting fatty deposits of liver cells and liver fibrosis in mice[J]. Chin J Cell Mol Immunol, 2020, 36(11): 996-1001. DOI: 10.13423/j.cnki.cjcmi.009098.
黄伟, 潘瑾, 付慧. 过氧化物酶体增殖物激活受体δ(PPARδ)调节糖脂代谢抑制小鼠肝细胞脂肪沉积和肝纤维化[J]. 细胞与分子免疫学杂志, 2020, 36(11): 996-1001. DOI: 10.13423/j.cnki.cjcmi.009098.
[26]SHI QY. Expression of FXR and PPAR α receptor and their effects on bile acid level in rats with intrahepatic cholestasis of pregnancy[P]. 2012-01-01.
时青云. FXR和PPARα受体的表达及其对妊娠肝内胆汁淤积大鼠胆汁酸水平的影响[P]. 2012-01-01.
[27]WANG C, PENG F, ZHAONG B, et al. Metabolomic analysis reveals the therapeutic effects of MBT1805, a novel pan-peroxisome proliferator-activated receptor agonist, on α-naphthylisothiocyanate-induced cholestasis in mice[J]. Front Pharmacol, 2021, 12: 732478. DOI: 10.3389/fphar.2021.732478.
[28]DAI M, YANG J, XIE M, et al. Inhibition of JNK signalling mediates PPARα-dependent protection against intrahepatic cholestasis by fenofibrate[J]. Br J Pharmacol, 2017, 174(18): 3000-3017. DOI: 10.1111/bph.13928.
[29]PU SY, REN CY. Role of nuclear receptor FXR in hepatic stellate cells and hepatic fibrosis[J]. Progr Physiolog Sci, 2022, 53(1): 19-23. DOI: 10.3969/j.issn.0559-7765.2022.01.005.
蒲詩云, 任常谕. 核受体FXR在肝星状细胞及肝纤维化中的作用[J]. 生理科学进展, 2022, 53(1): 19-23. DOI: 10.3969/j.issn.0559-7765.2022.01.005.
[30]GUO YT, ZHAO JM, SONG L. Rosiglitazone depressed activation of rat hepatic stellate cells in vitro[J]. Basic Clin Med, 2008, 28(11): 1129-1133. DOI: 10.3969/j.issn.1001-6325.2008.11.003.
郭晏同, 赵景明, 宋磊. 罗格列酮抑制体外大鼠肝星状细胞活化[J]. 基础医学与临床, 2008, 28(11): 1129-1133. DOI: 10.3969/j.issn.1001-6325.2008.11.003.
[31]TAO L, WU L, ZHANG W, et al. Peroxisome proliferator-activated receptor γ inhibits hepatic stellate cell activation regulated by miR-942 in chronic hepatitis B liver fibrosis[J]. Life Sci, 2020, 253: 117572. DOI: 10.1016/j.lfs.2020.117572.
[32]LIU H, WANG M, JIN Z, et al. FNDC5 induces M2 macrophage polarization and promotes hepatocellular carcinoma cell growth by affecting the PPARγ/NF-κB/NLRP3 pathway[J]. Biochem Biophys Res Commun, 2021, 582: 77-85. DOI: 10.1016/j.bbrc.2021.10.041.
[33]HELLEMANS K, MICHALIK L, DITTIE A, et al. Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells[J]. Gastroenterology, 2003, 124(1): 184-201. DOI: 10.1053/gast.2003.50015.
[34]XIN X, YAN HZ, LI WQ, et al. Studies on PPAR α and γ participating in progression of liver fibrosis by regulating ACSL1[J]. J Clin Hepatol, 2014, 30(8): 833-835. DOI: 10.3969/j.issn.1001-5256.2014.07.034.
辛萱, 颜红柱, 李维卿, 等. 过氧化物酶体增殖物激活受体α、γ调控长链酰基辅酶A合成酶1对肝纤维化进程的影响[J]. 临床肝胆病杂志, 2014, 30(8): 833-835. DOI: 10.3969/j.issn.1001-5256.2014.07.034.
[35]XIE GQ, LIAO GQ, MAN XB. Expression of PPARα mRNA in liver of primary hepatocellular carcinomas[J]. Chin J Clin Gastroenterol, 2009, 21(2): 97-99. DOI: 10.3870/j.issn.1005-541X.2009.02.012.
解国清, 廖国清, 满晓波. 肝细胞癌组织中PPARα mRNA的表达规律及其意义[J]. 临床消化病杂志, 2009, 21(2): 97-99. DOI: 10.3870/j.issn.1005-541X.2009.02.012.
[36]WU CH. Effect of PPAR-α agonist pirinic acid on oxidative stress in liver tissues adjacent to hepatocellular carcinoma after TAE[D]. Dali: Dali University, 2020.
吴春华. PPAR-α激动剂匹立尼酸对肝癌TAE后癌旁肝组织氧化应激的作用[D]. 大理: 大理大学, 2020.
[37]FAN XY, DU W, LI ZL. The effect of pirinixic acid on the expressions of PPAR-α, NF-κb and MMP-9 in paracancerous liver tissues after transarterial embolization of liver cancer[J]. J Intervent Radiol, 2020, 29(11): 1110-1115. DOI: 10.3969/j.issn.1008-794X.2020.11.011.
范馨予, 杜偉, 李正亮. 匹立尼酸对肝癌TAE术后癌旁肝组织过氧化物酶体增殖物激活受体-α、核因子-κB和基质金属蛋白酶-9表达的影响[J]. 介入放射学杂志, 2020, 29(11): 1110-1115. DOI: 10.3969/j.issn.1008-794X.2020.11.011.
[38]DING M, ZHANG S, GUO Y, et al. Tumor microenvironment acidity triggers lipid accumulation in liver cancer via SCD1 activation[J]. Mol Cancer Res, 2022, 20(5): 810-822. DOI: 10.1158/1541-7786.MCR-21-0699.
[39]DAI XM, LI LP, HUANG QL. Studies on the expression of Peroxisome Proliferator-activated Receptor γ(PPAR-γ) in human hepatocellula carcinoma between HBV-Related and HCV-Related infections[J]. J Med Sci Cent South China, 2012, 40(3): 253-256. DOI: 10.3969/j.issn.2095-1116.2012.03.009.
戴小明, 李彬鹏, 黄秋林. 过氧化物酶体增殖物激活受体γ在HBV、HCV感染的肝细胞癌组织中表达的研究[J].中南医学科学杂志, 2012, 40(3): 253-256. DOI: 10.3969/j.issn.2095-1116.2012.03.009.
[40]LI X, ZHAO Q, QI J, et al. lncRNA Ftx promotes aerobic glycolysis and tumor progression through the PPARγ pathway in hepatocellular carcinoma[J]. Int J Oncol, 2018, 53(2): 551-566. DOI: 10.3892/ijo.2018.4418.
[41]VACCA M, DAMORE S, GRAZIANO G, et al. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma[J]. PLoS One, 2014, 9(8): e104449. DOI: 10.1371/journal.pone.0104449.
[42]HAN W, WANG N, KONG R, et al. Ligand-activated PPARδ expression promotes hepatocellular carcinoma progression by regulating the PI3K-AKT signaling pathway[J]. J Transl Med, 2022, 20(1): 86. DOI: 10.1186/s12967-022-03288-9.
[43]SHEN B, LI A, WAN YY, et al. Lack of PPARβ/δ-inactivated SGK-1 is implicated in liver carcinogenesis[J]. Biomed Res Int, 2020, 2020: 9563851. DOI: 10.1155/2020/9563851.
[44]XU W, CHEN Z, LIU G, et al. Identification of a potential PPAR-related multigene signature predicting prognosis of patients with hepatocellular carcinoma[J]. PPAR Res, 2021, 2021: 6642939. DOI: 10.1155/2021/6642939.
[45]ZHANG Z, YAO T, ZHAO N, et al. Disruption of peroxisome proliferator-activated receptor α in hepatocytes protects against acetaminophen-induced liver injury by activating the IL-6/STAT3 pathway[J]. Int J Biol Sci, 2022, 18(6): 2317-2328. DOI: 10.7150/ijbs.69609.
[46]FAN S, HUANG X, WANG S, et al. Combinatorial usage of fungal polysaccharides from Cordyceps sinensis and Ganoderma atrum ameliorate drug-induced liver injury in mice[J]. Food Chem Toxicol, 2018, 119: 66-72. DOI: 10.1016/j.fct.2018.05.027.
[47]LIU K, CHEN X, REN Y, et al. 3,3,5-triiodo-l-thyronine inhibits drug-induced liver injury through activation of PPARα as revealed by network pharmacology and biological experimental verification[J]. Toxicol Appl Pharmacol, 2022, 448: 116098. DOI: 10.1016/j.taap.2022.116098.
[48]JI J, LI S, JIANG Z, et al. Activating PPARβ/δ protects against endoplasmic reticulum stress-induced astrocytic apoptosis via UCP2-dependent mitophagy in depressive model[J]. Int J Mol Sci, 2022, 23(18): 0822. DOI: 10.3390/ijms231810822.
[49]FAN S, GAO Y, QU A, et al. YAP-TEAD mediates PPAR α-induced hepatomegaly and liver regeneration in mice[J]. Hepatology, 2022, 75(1): 74-88. DOI: 10.1002/hep.32105.
[50]XIE G, YIN S, ZHANG Z, et al. Hepatocyte peroxisome proliferator-activated receptor α enhances liver regeneration after partial hepatectomy in mice[J]. Am J Pathol, 2019, 189(2): 272-282. DOI: 10.1016/j.ajpath.2018.10.009.
收稿日期:
2022-10-09;錄用日期:2022-11-11
本文编辑:王亚南