一道平面向量题的解法探究

2022-10-10 08:25:38重庆市铜梁二中402560周渝川
中学数学研究(江西) 2022年10期
关键词:运算量代数定点

重庆市铜梁二中 (402560) 李 波 周渝川

在浙江省的高考和模拟考试中,平面向量往往作为填空压轴题出现.这类题目虽短小精干,却解法丰富多样、不失经典.

一 解法探究

图1

评注:解法2运用辅助线,简化运算.

评注:先将目标平方,把问题转化成求数量积的范围,再把数量积用函数表示,最后用柯西-布捏科夫斯基不等式放缩求解.“见模平方”是处理向量的模有关问题的常见方法.

图2

评注:建立直角坐标系,首先将目标转化成动点到定点的距离,解法4充分利用“点A,B在圆x2+y2=25上”及消元法,求得P的轨迹,运算量偏大;解法5用到了这样一个圆的模型:平面上到两定点的距离的平方和为定值的点的轨迹是圆,十分简洁.

图3

评注:解法6和解法4、解法5的共同点在于利用“隐圆”的性质解题,计算量较小,关键是利用了矩形的一个性质.

由解法6,我们容易得到一般规律,即:

进一步可得:

向量兼有几何和代数特征,是联系三角、几何、代数的纽带.处理向量问题所用的技巧和方法十分丰富,如:转化、数形结合、不等式等,几乎涵盖了整个高中数学的思想方法,这有利于从整体上把握数学知识.因此,在处理向量问题时往往要将几何直观和代数运算结合使用,充分联想,多方位考虑问题,提高思维品质,这也是数学核心素养的要求.

猜你喜欢
运算量代数定点
例谈圆锥曲线中的定点定值问题
定点帮扶让村民过上美好生活
今日农业(2021年21期)2021-11-26 05:07:00
解析几何中定点问题的处理策略
两个有趣的无穷长代数不等式链
直线过定点的5种特优解法
Hopf代数的二重Ore扩张
什么是代数几何
科学(2020年1期)2020-08-24 08:08:06
用平面几何知识解平面解析几何题
减少运算量的途径
让抛物线动起来吧,为运算量“瘦身”