曾文静 邱岚英 陈俊杰 钱浩宇 张楠 丁艳锋 江瑜
秸秆还田下大气CO2浓度升高对水稻生长和CH4排放的影响
曾文静 邱岚英 陈俊杰 钱浩宇 张楠 丁艳锋 江瑜*
(南京农业大学,南京 210095;*通信联系人,email: yujiang@njau.edu.cn)
【目的】明确秸秆还田下大气CO2浓度升高对水稻生长和稻田CH4排放的影响,为气候变化下温室气体排放评估和丰产低碳的稻作技术创新提供理论参考和科学依据。【方法】利用开顶式气室(Open top chamber, OTC)进行田间试验,设置两个CO2浓度处理,分别为正常大气CO2浓度处理(简称aCO2,CO2浓度约为0.04%)和大气CO2浓度升高处理(简称eCO2,CO2浓度约为0.055%),每个处理的田块混入等量的前茬小麦秸秆,探明秸秆还田下大气CO2浓度升高对水稻产量等生长特性、稻田CH4排放及微生物丰度的影响,揭示秸秆还田下大气CO2浓度升高对CH4排放的影响机制。【结果】大气CO2浓度升高显著促进水稻的生长,使剑叶叶面积增加25.0%,地上生物量增加22.0%,产量提高29.0%。大气CO2浓度升高显著增加了穗数、结实率和千粒重,但对穗粒数影响不显著。秸秆还田下,大气CO2浓度升高有降低稻田CH4排放的趋势,使单位产量CH4排放量降低了39.4%。大气CO2浓度升高使土壤甲烷氧化关键基因的拷贝数增加了20.0%,但对甲烷产生关键基因的拷贝数影响较小。【结论】秸秆还田条件下,未来大气CO2浓度升高不仅提高了水稻产量,而且有利于减少稻田温室气体CH4的排放。
大气CO2升高;秸秆还田;温室气体;水稻产量;甲烷排放
水稻是世界最重要的粮食作物之一,世界上一半以上的人口都以大米作为主食[1]。根据国际水稻研究所(IRRI)预测,到2050年,水稻需增产约30%才能满足人类日益增长的粮食需求[2]。但是,稻田又是第二大温室气体甲烷(CH4)的主要排放源之一,约占全球人为CH4排放总量的11%[3]。我国稻田CH4排放约占全球稻田CH4排放总量的30%[4]。
自工业革命以来,由于化石燃料大量燃烧和土地利用方式改变,大气中CO2浓度持续升高,大气CO2浓度已经由1760年的0.028%升高到2020年的0.0415%;并且根据联合国政府间气候变化专门委员会(IPCC)的第五次报告预测,大气CO2浓度将在2050年达到0.055%[3,5]。水稻作为C3植物,目前大气CO2浓度还未达到其光合作用的饱和点,在一定范围内增加大气中CO2浓度会增强水稻的光合作用,促进水稻植株生长[4-7]。
稻田CH4净排放是由CH4产生和氧化两个过程控制的:CH4是由甲烷菌在厌氧的条件下产生的,根系分泌物、秸秆等都能为产甲烷菌提供碳源;稻田土壤产生的大部分CH4会被甲烷氧化菌在水土交界面和水稻根际氧化成CO2[8]。众多研究都表明大气CO2浓度升高会刺激稻田CH4的排放,其主要原因是大气CO2浓度升高促进根系生长,使根系分泌物和脱落物增加,进而刺激了产甲烷菌的生长[7, 9-12]。前人研究也表明大气CO2浓度升高会提高产甲烷功能基因的丰度,对甲烷氧化功能基因的丰度影响较小[13-14]。但是以往的研究主要是在秸秆不还田的条件下进行的,而秸秆还田下,大气CO2浓度升高对水稻生长和稻田CH4排放的影响还不清楚。
由于秸秆还田具有培肥地力、促进作物生长、节约生产成本、降低空气污染等优势,秸秆原位还田已经成为秸秆利用的主要方式之一[15-18]。秸秆也能为甲烷产生过程提供碳底物,因此秸秆还田会显著促进稻田CH4排放[19]。我们前期的meta分析发现长期秸秆还田会使稻田甲烷排放增加约一倍[20]。由于秸秆和水稻植株都能为甲烷产生过程提供碳源,且秸秆的碳源远多于根际沉降,秸秆还田下大气CO2浓度升高对稻田CH4排放的影响可能与秸秆不还田不同。为此,本研究利用OTC平台进行了田间试验,在秸秆还田下设置正常CO2浓度处理和大气CO2浓度升高处理,研究大气CO2浓度升高对水稻生长、稻田甲烷排放及其相关微生物的影响,拟为气候变化下温室气体排放评估和丰产低排的稻作技术创新提供理论参考和科学依据。
试验于2020年在南京农业大学丹阳试验基地(31°54′31″N, 119°28′21″E)进行。该地属于亚热带季风性气候,年平均气温16.4℃,年降雨量1056 mm,全年日照时数为2043 h,无霜期为224 d。稻田供试土壤为黏壤土,土壤有机质含量26.2 g/kg,总氮含量2.8 g/kg,总磷含量1.0 g/kg,总钾含量14.4 g/kg,有效磷含量 24.4 mg/kg,有效钾含量 99.4 mg/kg。
本研究所用OTC平台由6个开顶箱、控制系统和供气系统组成。开顶箱为正六边形棱柱体,每边长1.5 m,高1.8 m。开顶箱由铝合金框架和钢化玻璃搭建,顶部敞开。控制系统包括CO2传感器、阀控模块、主控模块、数据采集模块等,可实现OTC内CO2浓度实时监测与调节。供气系统则以CO2钢瓶作为供气气源,由管道与开顶箱相连,开顶箱高1.2 m处的6个拐角设置CO2喷气孔,向开顶箱内喷CO2气体。其中3个开顶箱不喷CO2,其浓度为环境CO2浓度(aCO2,0.04%),另外3个开顶箱CO2浓度设置为0.055%(大气CO2浓度升高处理,eCO2)。aCO2开顶箱和eCO2开顶箱相距15 m以上。
试验开始前,将开顶箱内0-15 cm土壤挖出并与秸秆混匀后还回开顶箱,秸秆量为6 t/hm2,秸秆还田量根据当地实际生产中秸秆全量还田量设置。混入的秸秆为前茬的小麦秸秆,收获后烘干至恒定质量,再剪成2~3 cm的小段,充分混匀后拌入土壤。由于杂交稻对大气CO2浓度升高的响应强烈[21]且研究较少,供试的水稻品种采用杂交籼稻Y两优900。稻种于6月7日开始育秧,7月2日移栽,10月29日收获。每穴2苗,株行距为16.7 cm × 25 cm,即24穴/m2。稻田施肥方案参照当地施肥水平:磷肥施用过磷酸钙,总磷肥(以P2O5计)施用量为120 kg/hm2;钾肥用氯化钾,施用量(以K2O计)为80 kg/hm2,全部以基肥施入;氮肥用尿素,施用量(折合纯N)为225 kg/hm2,分基肥(60%)、分蘖肥(20%)和穗肥(20%)三次施入。稻田水分管理为前期淹水-中期烤田-后期间歇灌溉。
1.3.1 稻田CH4排放
水稻移栽后2 d在每个开顶箱内放入2个取气底座(50 cm × 50 cm× 15 cm),插入土层深度为10 cm。取气方法采用静态箱法,由于考虑到水稻活棵补苗,水稻移栽后第2周开始每周采集气体样品一次。采样时间为上午9:00-11:00, 采集箱由不透明的PVC材料制成,尺寸为50 cm × 50 cm × 50/100 cm(箱高依据水稻株高确定)。使用自动取样装置进行气体样品采集,设置30 min为一个周期,每隔10 min采集一次气体,共采集4个100 mL的气体样本。及时带回实验室用气相色谱仪(Agilent 7890A, USA)进行甲烷浓度测定。甲烷排放通量(flux)计算公式参照前人研究[20]:
=× [273/(273+T)] ×× d/d;
式中,为CH4排放通量(mg·m−2h−1),为标准大气压下的CH4密度(0.714 kg·m−3),为采集箱高度(m),d/d为采集箱内CH4浓度的变化速率(μL·L−1h−1)。
1.3.2 植株生长特性
于抽穗期进行株高和叶面积测定。株高测定方法为每个小区选长势均匀、生长状况良好的3穴植株,测量土面至最高叶叶尖的高度;每个OTC内另取具代表性的剑叶和倒2叶各20片,用台式叶面积仪(LI-3100C)测定其叶面积。
于水稻成熟期进行地上部生物量和产量测定。首先分小区考查有效穗数,以各小区的平均有效穗数为依据取代表性植株6穴,分穴取其地上部分,分为茎叶和穗两部分,分别于105℃下杀青0.5 h,70℃下恒定烘干72 h至恒重后,称量其质量。穗单独收获后进行人工脱粒,计数饱粒数、空秕粒数,并计算每穗粒数、结实率和千粒重,小区内剩余的穗风干后脱粒,按种植密度计算水稻的实际产量。
1.3.3 土壤微生物丰度的测定
于水稻孕穗期用土钻(直径5 cm)采集0-15 cm深度的土样,测定产甲烷菌和甲烷氧化菌的丰度。土样使用装有干冰的泡沫箱保存运输,取回后过2 mm网筛去除杂质,于−80℃冰箱保存。称取冷冻土样,使用土壤DNA提取试剂盒(Power Soil DNA Isolation Kit, MoBio, USA)提取土壤微生物的DNA。分别使用引物和对和基因在CFX96(Bio-Rad, USA)上进行实时荧光定量PCR。基因的拷贝数代表产甲烷菌的丰度,基因的拷贝数代表甲烷氧化菌丰度。
试验数据使用Microsoft Excel 2016软件进行处理及图表绘制,使用IBM SPSS Statistics 21.0软件进行独立样本测验。
2.1 大气CO2浓度升高对水稻生长特性的影响
由表1可知,大气CO2浓度升高对水稻的株高、叶面积和生物量均表现为促进作用。与环境CO2浓度处理(aCO2)相比,大气CO2浓度升高使水稻平均株高增加了1.7%,但二者差异不显著(=0.119)。大气CO2浓度升高处理(eCO2)的剑叶和倒2叶的叶面积较aCO2分别显著增加25.0%(<0.01)和22.2%(<0.05)。大气CO2浓度升高处理的地上部生物量较aCO2平均增加22.0%,二者差异显著(<0.01)。
表1 大气CO2浓度升高对水稻株高、叶面积和生物量的影响
aCO2表示环境CO2浓度,eCO2表示大气CO2浓度升高。不同小写字母代表不同CO2浓度处理间的显著性差异(<0.05,独立样本测验)。下同。
aCO2indicate ambient CO2concentration, eCO2indicateelevated atmospheric CO2concentration. Different lowercase letters represent significant difference between different CO2concentration treatments (< 0.05, the Independent SampleTest). The same as in the tables and figures below.
从表2可看出,相较于aCO2处理,大气CO2浓度升高处理的水稻籽粒产量显著提高29.0%(<0.01),eCO2对水稻产量构成的四个关键因素的影响存在差异。一方面,eCO2使水稻的千粒重显著增加3.0%(<0.05),使水稻穗数和结实率分别增加18.9%和7.6%,差异达到显著水平(<0.01);另一方面,大气CO2浓度升高对水稻的每穗粒数无显著影响(=0.902)。
表2 大气CO2浓度升高对产量及产量构成因素的影响
从图1可以看出,秸秆还田下大气CO2浓度升高处理和环境CO2浓度处理的CH4排放动态变化基本一致。二者在水稻生长前期排放较多,后期排放较少,趋近于零;均在移栽后40 d左右出现排放高峰。分阶段来看,在水稻生长前期两个处理的排放通量差异不显著,而在拔节后至成熟前eCO2处理的排放通量明显低于aCO2处理。
图中误差线表示标准误。下同。
Fig. 1. Effects of elevated atmospheric CO2concentration on CH4emission dynamics.
图2 大气CO2浓度升高对CH4累积排放量(A)和单位产量CH4排放量(B)的影响
Fig. 2. Effects of elevated atmospheric CO2concentration on CH4emissions (A) and yield-scaled CH4emission (B).
图3 大气CO2浓度升高对甲烷菌和氧化菌丰度的影响
Fig. 3. Influence of elevated atmospheric CO2concentration on the abundance of methanogen and methanotroph.
秸秆还田下大气CO2浓度升高对CH4累积排放量和单位产量CH4排放量表现为降低效应。从图2-A可以看出,相较于aCO2处理,秸秆还田下大气CO2浓度升高使CH4累积排放量降低22.0%;从图2-B可看出,大气CO2浓度升高使单位产量CH4排放量降低约39.4%。
由图3可知,秸秆还田条件下,大气CO2浓度升高对土壤甲烷产生关键基因的拷贝数的影响较小,但使甲烷氧化关键基因的拷贝数提高了20.0%。这在一定程度上说明了秸秆还田下大气CO2浓度升高促进CH4的氧化过程,而对产生过程影响较小。
前人研究发现,大气CO2浓度升高会促进水稻根[22-24]、茎[24-25]、叶[26-27]和穗[28-29]等各个器官的生长,使其产量增加[29-30]。但是这些结论均是在秸秆不还田条件下得出的,秸秆还田条件下的研究较少。本研究结果表明,秸秆还田下大气CO2浓度升高对水稻株高、叶面积、地上部生物量也具有显著的促进作用。此外,本研究表明大气CO2浓度升高使水稻产量提高了29.0%,这一数值高于以往的大部分研究。如Raj等[31]在不同氮水平下对印度水稻品种Pusa 44进行FACE试验,结果表明CO2浓度升高使稻谷产量增加25%;van Groenigen等[7]通过Meta分析得出,大气CO2浓度升高使水稻产量平均提高24.6%。可能原因是:1)本研究采用了杂交稻品种Y两优900。现有的研究表明杂交籼稻品种一般对大气CO2浓度升高的响应较强[32-33]。2)本研究氮肥施用量较高。大气CO2浓度升高后会导致水稻氮亏缺,高氮投入会促进水稻对大气CO2浓度升高的响应[31, 34-35]。3)本研究采用了秸秆还田措施。作物秸秆富含氮磷钾等矿质元素,秸秆分解后能为水稻生长提供养分,进而可能增加水稻对大气CO2浓度升高的响应[17, 36-38]。
本研究发现两个CO2处理CH4排放动态都呈单峰模式,拔节前达到高峰,这与前人的研究一致[39]。稻田甲烷排放主要受碳底物和氧浓度控制[10]。秸秆还田下,水稻生长初期,秸秆腐解率较低,同时水稻植株较小根际分泌物少,产甲烷底物较少,CH4排放通量小;随着秸秆逐渐腐解,产甲烷底物增加,CH4的产生增加;拔节后采用烤田和间歇灌溉会增加土壤氧浓度,进而抑制甲烷产生菌的生长同时促进甲烷氧化,因此,水稻拔节后甲烷排放迅速下降。另外,本研究还发现在水稻生长前期aCO2处理和eCO2处理的排放通量差异不显著。这是由于CO2浓度升高主要通过影响根际沉降和根系泌氧来影响甲烷排放,而前期秸秆对土壤碳源的影响远大于根际沉降,水分管理对土壤氧浓度的影响也远大于水稻植株,因此,水稻生长前期大气CO2浓度升高并不会影响稻田甲烷排放动态。
前人Meta分析表明,大气CO2浓度升高使CH4排放量增加约40%[9]。CO2是植株光合作用的底物,大气CO2浓度升高促进了水稻生长,使水稻根系分泌物增加,为CH4的产生提供更多的碳源,甲烷产生底物增加,最终促进了CH4排放[40-41]。而本研究发现,秸秆还田条件下,大气CO2浓度升高有降低稻田甲烷排放的趋势,这一研究结果与我们最近的盆栽秸秆添加试验类似[42]。从CH4产生过程来看,由于秸秆中本身富含有机物,稻田中秸秆还田时能为CH4产生提供大量碳源[43-44],可能会掩盖大气CO2浓度升高对产甲烷底物的促进作用。前人Meta分析表明添加秸秆使土壤有机碳浓度显著提高12.8%,土壤活性碳含量增加27.4%~56.6%,但是大气CO2浓度升高仅引起土壤有机碳库增加4.3%[19, 45]。与此同时,Watanabe等[46]也证实了添加秸秆会降低根系对稻田CH4排放碳源的贡献,使根系对稻田CH4排放碳源的贡献率从80%~85%降低到37%~40%。本研究也发现,秸秆还田下大气CO2浓度升高对水稻土壤中甲烷菌的影响很小,进一步说明秸秆还田下大气CO2浓度升高对CH4的产生过程影响较小。
从CH4氧化过程来看,在淹水稻田中,CH4浓度和O2浓度是决定土壤CH4氧化能力的关键因素。当秸秆不还田时,稻田土壤中的有机碳浓度较低,CH4的产生量较少,低CH4浓度可能会限制甲烷氧化菌的生长,阻碍CH4的氧化过程[6, 47-48]。Schrope等[49]也发现,在低土壤有机碳条件下,CO2浓度增加对于CH4的氧化无显著影响。当秸秆还田时,土壤有机碳含量高,土壤中的CH4浓度处于较高状态[19, 50],此时CO2浓度升高对氧化过程的影响主要与O2浓度有关。CO2浓度升高促进植株生长,而健壮的植株使根系泌氧能力增强,刺激O2向土壤运输[51-52]。根际土壤O2含量增加,刺激了土壤中甲烷氧化菌的生长,促进了CH4的氧化[53]。本研究也表明,秸秆还田下大气CO2浓度升高使土壤中甲烷氧化菌的数量提高了20%,进一步验证了秸秆还田下大气CO2浓度升高促进了CH4的氧化,且促进程度大于秸秆还田下大气CO2浓度升高对甲烷产生菌的作用。综上,与秸秆不还田下的情况相反,秸秆还田下大气CO2浓度升高对CH4的产生过程影响较小,但促进了CH4的氧化,最终导致CH4排放量减少。
本研究表明,秸秆还田下未来大气CO2浓度升高可能有利于减少稻田CH4排放。因此,在对气候变化下温室气体排放进行评估时,秸秆管理因素不容忽视。同时,本研究还发现秸秆还田下大气CO2浓度升高促进水稻产量增加,降低单位产量CH4排放,说明未来大气CO2浓度升高可能有利于稻田的丰产减排。另外,本研究是单季试验,但是长期大气CO2浓度升高后一方面可能会增加小麦秸秆量[54],增加稻田碳投入和CH4排放;另一方面大气CO2浓度升高会提高小麦秸秆的碳氮比,降低水稻前期秸秆分解速率;降低CH4排放[40]。此外,长期大气CO2浓度升高还会促进植株氮素吸收,降低土壤氮有效性[55],也可能会影响CH4排放[56]。因此,未来需要利用长期试验来观察大气CO2浓度升高对稻田CH4排放。
[1] FAO (Food and Agriculture Organization of the United Nations). FAOSTAT-Food and agriculture data[EB/OL]. 2021. http://www.fao.org/faostat/zh/#data/QC.
[2] IRRI (International Rice Research Institute). Rice Today: Yield increase prospects for rice to 2050[EB/OL] // Fischer T. 2014. https://ricetoday.irri.org/yield-increase- prospects-for-rice-to-2050.
[3] IPCC (Intergovernmental Panel on Climate Change). Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. //Stocker T F. Climate Change 2013: The Physical Science Basis[R]. Cambridge, UK, and New York, NY: Cambridge University Press, 2013: 95-123.
[4] Yan X Y, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]., 2009, 23: GB2002.
[5] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830.
Li Y S, Jin J, Liu X B. Research progress on physiological responses of crops to elevated atmospheric CO2concentration[J]., 2020, 46(12): 1819-1830. (in Chinese with English abstract)
[6] Zhu C W, Zhu J G, Cao J, Jiang Q, Liu G, Ziska L H. Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2] [J]., 2014, 65(20): 6049-6056.
[7] van Groenigen K J, Kessel C, Hungate B A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions[J]., 2013, 3: 288-291.
[8] 张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报2015, 35(20): 6592-6603.
Zhang J C, Xu Y Q, Lu Y H. Microbial mechanisms of methane production and oxidation in terrestrial ecosystems[J]., 2015, 35 (20): 6592-6603.
[9] van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]., 2011, 475: 214-216.
[10] 蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放[M]. 合肥: 中国科学技术大学出版社, 2009: 136-140.
Cai Z C, Xu H, Ma J. CH4and N2O emissions from paddy ecosystem[M]. Hefei: University of Science and Technology of China Press, 2009: 136-140. (in Chinese)
[11] 田婷, 张青, 蒋华伟, 靖晶, 姜红卫, 李欣, 江君, 徐君. 水稻植株对稻田甲烷排放影响的研究进展[J]. 江苏农业科学, 2017, 45(20): 28-31.
Tian T, Zhang Q, Jiang H W, Jing J, Jiang H W, Li X, Jiang J, Xu J. Research progress on effects of rice plants on methane emission from paddy fields[J]., 2017, 45(20): 28-31. (in Chinese with English abstract)
[12] Liu G C, Tokida T, Matsunami T, Nakamura H, Okada M, Sameshima R, Hasegawa T, Sugiyama S. Microbial community composition controls the effects of climate change on methane emission from rice paddies[J].. 2012, 4(6): 648-54.
[13] Liu D Y, Tago K, Hayatsu M, Tokida T, Asakawa S. Effect of elevated CO2concentration, elevated temperature and no nitrogen fertilization on methanogenic archaeal and methane-oxidizing bacterial community structures in paddy soil[J]., 2016, 31(3): 349-356.
[14] Okubo T, Liu D Y, Tsurumaru H, Ikeda S, Asakawa S, Tokida T, Tago K, Hayatsu M, Aoki N, Ishimaru K, Ujiie K, Usui Y, Nakamura H, Sakai H, Hayashi K, Hasegawa T, Minamisawa K. Elevated atmospheric CO2levels affect community structure of rice root-associated bacteria[J]., 2015, 6: 136.
[15] 钟平, 张超旭, 王丽, 王福成, 汪春. 秸秆资源综合利用研究[J]. 现代农业, 2020(6): 4-5.
Zhong P, Zhang C X, Wang L, Wang F C, Wang C. Research on comprehensive utilization of straw resources[J]., 2020(6): 4-5. (in Chinese with English abstract)
[16] 张志才, 陈加银, 张永明. 丘陵地小麦秸秆全量还田对土壤肥力及水稻生长的影响[J]. 南方农业, 2021, 15(7): 43-46.
Zhang Z C, Chen J Y, Zhang Y M. Effects of total wheat straw returning on soil fertility and rice growth in hilly land [J]., 2021, 15(7): 43-46. (in Chinese with English abstract)
[17] 李凤博, 牛永志, 高文玲, 刘金根, 卞新民. 耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响[J]. 土壤通报, 2008, 39(3): 549-552.
Li F B, Niu Y Z, Gao W L, Liu J G, Bian X M. Effects of tillage and straw returning on soil physicochemical properties and yield in direct-seeding rice field[J]., 2008, 39(3): 549-552. (in Chinese with English abstract)
[18] 陈云峰, 夏贤格, 杨利, 刘波, 张敏敏, 聂新星. 秸秆还田是秸秆资源化利用的现实途径[J]. 中国土壤与肥料, 2020(6): 300.
Chen Y F, Xia X G, Yang L, Liu B, Zhang M M, Nie X X. Straw returning to field is a realistic approach to straw resource utilization [J]., 2020(6): 300. (in Chinese with English abstract)
[19] Liu C, Lu M, Cui J, Li B, Fang C M. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]., 2014, 20(5): 1366-1381.
[20] Jiang Y, Qian H Y, Huang S, Zhang X Y, Wang L, Zhang L, Shen M X, Xiao X P, Chen F, Zhang H L, Lu C Y, Li C, Zhang J, Deng A X, van Groenigen K J, Zhang W J. Acclimation of methane emissions from rice paddy fields to straw addition[J]., 2019, 5: eaau9038
[21] Hu S W, Wang Y X, Yang L X. Response of rice yield traits to elevated atmospheric CO2concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies[J]., 2021, 764: 142797.
[22] 陈改苹, 朱建国, 庞静, 程磊, 谢祖彬, 曾青. CO2浓度升高对水稻抽穗期根系有关性状及根碳氮比的影响[J]. 中国水稻科学, 2006, 20(1): 53-57.
Chen G P, Zhu J G, Pang J, Cheng L, Xie Z B, Zeng Q. Effects of elevated CO2concentration on root traits and root C/N ratio at heading stage of rice[J]., 2006, 20(1): 53-57. (in Chinese with English abstract)
[23] 刘红江, 杨连新, 黄建晔, 董桂春, 朱建国, 刘钢, 王余龙. FACE对三系杂交籼稻汕优63根系生长动态的影响[J]. 农业环境科学学报, 2008, 27(6): 2291-2296.
Liu H J, Yang L X, Huang J Y, Dong G C, Zhu J G, Liu G, Wang Y L. Effects of FACE on root growth dynamics of three-line indica hybrid rice Shanyou 63[J]., 2008, 27(6): 2291-2296. (in Chinese with English abstract)
[24] Wu J J, Kronzucker H J, Shi W M. Dynamic analysis of the impact of free-air CO2enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice[J]., 2018, 45(7): 696-704.
[25] Hasegawa T, Sakai H, Tokida T, Usui Y, Nakamura H, Wakatsuki H, Chen C P, Ikawa H, Zhang G, Nakano H. A high-yielding rice cultivar “Takanari” shows no N constraints on CO2fertilization[J]., 2019, 10: 361.
[26] Cai C, Yin X Y, He S Q, Jiang W Y, Si C F, Struik P C, Luo W H, Li G,Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2and temperature in FACE experiments[J]., 2016, 22(2): 856-874.
[27] 刘红江, 杨连新, 黄建晔, 董桂春, 朱建国, 刘钢, 王余龙. FACE对杂交籼稻汕优63干物质生产与分配的影响[J]. 农业环境科学学报, 2009, 28(1): 8-14.
Liu H J, Yang L X, Huang J Y, Dong G C, Zhu J G, Liu G, Wang Y L. Effects of FACE on dry matter production and distribution in indica hybrid rice Shanyou 63[J]., 2009, 28(1): 8-14. (in Chinese with English abstract)
[28] Zhang G Y, Sakai H, Usui Y, Tokida T, Nakamurac H, Zhu C W, Fukuoka M, Kobayashi K, Hasegawa T. Grain growth of different rice cultivars under elevated CO2concentrations affects yield and quality[J]., 2015, 179: 72-80.
[29] Zhang G Y, Sakai H, Tokida T, Usui Y, Zhu C W, Nakamura H, Yoshimoto M Fukuoka M, Kobayashi K, Hasegawa T. The effects of free-air CO2enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (L.) [J]., 2013, 64(11): 3179-3188.
[30] Wang J Q, Liu X Y, Zhang X H, Smith P, Li L Q, Filley T R. Cheng K, Shen M X, He Y B, Pan G X. Size and variability of crop productivity both impacted by CO2enrichment and warming: A case study of 4 years field experiment in a Chinese paddy[J]., 2016, 221: 40-49.
[31] Raj A, Chakrabarti B, Pathak H, Singh S D, Mina U, Purakayastha T J. Growth, yield and nitrogen uptake in rice crop grown under elevated carbon dioxide and different doses of nitrogen fertilizer[J]., 2019, 57: 181-187.
[32] Hu S W, Wang Y X, Yang L X. Response of rice yield traits to elevated atmospheric CO2concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies[J]., 2021, 764: 142797.
[33] 周娟, 舒小伟, 赖上坤, 许高平, 黄建晔, 姚友礼, 杨连新, 董桂春, 王余龙. 不同类型水稻品种产量和氮素吸收利用对大气CO2浓度升高响应的差异[J]. 中国水稻科学, 2020, 34(6): 561-573.
Zhou J, Shu X W, Lai S K, Xu G P, Huang J Y, Yao Y L, Yang L X, Dong G C, Wang Y L. Response of different rice varieties to elevated atmospheric CO2concentration in response to yield and nitrogen uptake and utilization[J]., 2020, 34(6): 561-573. (in Chinese with English abstract)
[34] Yang L X, Huang J Y, Yang H J, Dong G C, Liu H J, Liu G, Zhu J G, Wang Y L. Seasonal changes in the effects of free-air CO2enrichment (FACE) nitrogen (N) uptake and utilization of rice at three levels of N fertilization[J]., 2007, 100: 189.
[35] 杨连新, 王余龙, 黄建晔, 杨洪建. 开放式空气 CO2浓度增高对水稻生长发育影响的研究进展[J]. 应用生态学报, 2006, 17(7): 1333.
Yang L X, Wang Y L, Huang J Y, Yang H J. Effects of elevated CO2concentration in open air on rice growth and development[J]., 2006, 17(7): 1333. (in Chinese with English abstract)
[36] Bai Z H, Li H G, Yang X Y, Zhou B K, Shi X J, Wang B, Li D C, Shen J B, Chen Q, Qin W, Oenema O, Zhang F. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types[J]., 2013, 372(1-2): 27-37.
[37] Turmel M S, Speratti A, Baudron F, Verhulst N, Govaerts B. Crop residue management and soil health: A systems analysis[J]., 2015, 134(3): 6-16.
[38] Yang H J, Ma J X, Rong Z Y, Zeng D D, Wang Y C, Hu S J, Ye W W, Zheng X B. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat-soybean rotation system[J]., 2019(10): 1811-1825.
[39] Wang C, Jin Y G, Jia C, Zhang N, Song M Y, Kong D L, Liu S W, Zhang X H, Liu X Y, Zou J W, Lia S Q, Pan G X. An additive effect of elevated atmospheric CO2and rising temperature on methane emissions related to methanogenic community in rice paddies[J]., 2018, 257: 165-174.
[40] Zheng X H, Zhou Z X, Wang Y S, Zhu J G, Wang Y L, Yue J, Shi Y, Kobayashi K, Inubushi K, Huang Y, Han S H, Xu Z J, Xie B H, Butterbach-Bahl K, Yang L X. Nitrogen-regulated effects of free-air CO2enrichment on methane emissions from paddy rice fields[J]., 2006, 12: 1717-1732.
[41] Inubushi K, Cheng W G, Aonuma S, Hooue M M, Kobayashi K, Miura S, Kim H Y, Okadas M. Effects of free-air CO2enrichment (FACE) on CH4emission from a rice paddy field[J]., 2003, 9: 1458-1464.
[42] Qian H Y, Huang S, Chen J, Wang L, Hungate B A, van Kessel C, Zhang J, Deng A X, Jiang Y, van Groenigen K J, Zhang W J. Lower-than-expected CH4emissions from rice paddies with rising CO2concentrations[J]., 2020, 26: 2368-2376.
[43] Henriksen T M, Brelamd T A. Carbon mineralization,fungal and bacterial growth,and enzyme activities as affected by contact between crop residues and soil[J]., 2002, 35(1): 41-48.
[44] Turmel M S, Speratti A, Baudron F. Crop residue management and soil health: A systems analysis[J]., 2015, 134(3): 6-16.
[45] Liu S W, Ji C, Wang C, Chen J, Jin Y G, Zou Z H, Li S Q, Niu S L, Zou J W. Climatic role of terrestrial ecosystem under elevated CO2: Abottom-up greenhouse gases budget[J]., 2018, 21: 1108-1118.
[46] Watanabe A, Takeda T, Kimura M. Evaluation of carbon origins of CH4emitted from rice paddies[J]., 1999, 104: 13623-23630.
[47] Hanson R S, Hanson T E. Methanotrophic bacteria[J]., 1996, 60: 439-471.
[48] Van der Gon H A C, Neue H. Oxidation of methane in the rhizosphere of rice plants[J]., 1996, 22(4): 359-366.
[49] Schrope M K, Chanton J P, Allen L H,Baker J T. Effect of CO2enrichment and elevated temperature on methane emissions from rice,[J]., 1999, 5(5): 587-599.
[50] Jiang Y, van Groenigen, K J, Huang S, Hungate B A, van Kessel C, Hu S J, Zhang J, Wu L H, Yan X J, Wang L L, Chen J, Hang X N, Zhang Y, Horwath W R, Ye R Z, Linquist B A, Song Z W, Zheng C Y, Deng A X, Zhang W J. Higher yields and lower methane emissions with new rice cultivars[J]., 2017, 23: 4728-4738.
[51] 沈学良, 田光蕾, 周元昌, 王缨. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 2020, 10(2): 75-80.
Shen X L, Tian G L, Zhou Y C, Wang Y. Effects of biological characteristics of rice on methane emission from rice field[J]., 2020, 10(2): 75-80. (in Chinese with English abstract)
[52] Ma K, Qiu Q F, Lu Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]., 2010, 16: 3085-3095.
[53] 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2): 175-181.
Jiang Y, Guan D H, Zhang W J. Research progress of the effects of rice plant characteristics on methane emission from paddy fields and its mechanism[J]., 2018, 26(2): 175-181. (in Chinese with English abstract)
[54] 宋练, 蔡创, 朱春梧. [CO2]升高对粮食作物影响的研究进展[J]. 农业环境科学学报, 2020, 39(4): 786-796.
Song L, Cai C, Zhu C W. Review on crop responses to rising atmospheric [CO2] [J]., 2020, 39(4): 786-796.
[55] Yang L X, Liu H J, Wang Y X, Zhu J G, Huang J Y, Liu G, Dong G C, Wang Y L. Impact of elevated CO2concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions[J]., 2009, 112: 7-15.
[56] Cai Z C, Shan Y H, Xu H. Effects of nitrogen fertilization on CH4emissions from rice fields[J]., 2007, 53: 353-361.
Effect of Elevated CO2Concentration on Rice Growth and CH4Emission from Paddy Fields Under Straw Incorporation
ZENG Wenjing, QIU Lanying, CHEN Junjie, QIAN Haoyu, ZHANG Nan, DING Yanfeng, JIANG Yu*
(Nanjing Agricultural University, Nanjing 210095, China; Corresponding author, email: yujiang@njau.edu.cn)
【Objective】The aim of this study is to clarify the effects of increased atmospheric CO2concentration on rice growth and CH4emission under straw incorporation, so as to provide theoretical reference and lay a scientific basis for greenhouse gas emission assessment for rice production technology innovation concerning high yield and low carbon emission under climate change. 【Method】Field experiments were conducted in Open Top Chambers (OTC). Two CO2concentrations were designed, namely, ambient atmospheric CO2concentration (0.04%, aCO2) and elevated atmospheric CO2concentration (0.055%, eCO2) with an equal amount of previous wheat straw incorporation. We analyzed the effects of eCO2concentration on rice yield and growth, CH4emission and the abundance of related microorganisms from paddy fields under straw incorporation, which could illustrate the influence mechanism of eCO2on CH4emission under that conditions. 【Result】The results showed that eCO2significantly promoted rice growth, i.e., eCO2increased flag leaf area, aboveground biomass and rice yield by 25.0%, 22.0%, and 29.0%, respectively.Elevated atmospheric CO2concentration significantly increased the number of panicles, seed setting rate and 1000-grain weight, but eCO2have no effect on the number of grains per panicle. Under straw incorporation, eCO2trended to mitigate the CH4emission from rice paddies and reduced the yield-scared CH4emission by 39.4%. Elevated atmospheric CO2concentration increased the copy numbers of, a key gene for methane oxidation in soil, by 20%, but had little effect on the copy number of, a key gene for methane production. 【Conclusion】Under the straw incorporation, eCO2not only improves rice yield but also reduces CH4emission from rice paddies.
elevated atmospheric CO2; straw incorporation; greenhouse gase; rice yield; methane emission
10.16819/j.1001-7216.2022.210811
2021-08-19;
2022-03-06。
国家自然科学基金资助项目(32022061);中央高校基本科研业务费资助项目(KJYQ202101)。