张宇飞 王昊
(沈阳航空航天大学航空宇航学院,沈阳 110136)
输流管系统是一种重要的流体输送系统,在航空航天以及其它工业领域都有广泛的应用.然而,由于管道与流体之间的流固耦合效应以及外界激励对输流管的影响,往往会引起一些管道振动问题,甚至导致失稳,从而降低整个输流管系统的安全可靠性,乃至会造成严重的安全事故.因此,关于输流管动力学特性的研究具有重要的理论意义与工程实用价值[1-10].
输流管按照其边界条件可分为两端支承管以及悬臂管.悬臂输流管系统是一种非保守系统,当管道内的流体流速超过临界值时将发生颤振失稳,因此它的动力学行为也更加复杂[11].陶立佳等人[12]对端部随从力作用下的悬臂输流管系统建立了运动微分方程,研究了端部随从力和流体流速对悬臂输流管系统稳定性的影响,分析了悬臂输流管道的振动方式.易浩然等人[13]推导出了附加集中质量的悬臂输流管系统的非线性动力学方程,并通过数值计算和实验研究了附加集中质量的位置与质量比对悬臂输流管系统产生的动力学影响.Zhang等人[14]首次应用能量相位法研究了悬臂输流管系统在简谐外激励和脉动内流作用下的多脉冲轨道及混沌动力学问题,理论结果证明系统存在Shilnikov型多脉冲混沌运动,综合理论和数值仿真结果,证实了管道中存在Smale马蹄意义下的混沌运动.Sazesh等人[15]对悬臂输流管系统在随机激励下的振动进行了数值分析,建立了一种在随机激励下线性输流管振动响应随流速变化的随机分析方法,并且研究了质量比和阻尼比等参数对响应方差和颤振速度的影响.Kheiri[16]研究了上游端不完全支撑而另一端自由的输流管的非线性动力学,通过数值分析发现此结构可能会降低发生颤振失稳的临界流速,研究发现在管道系统中增加结构阻尼是一种普遍且有效的减轻二次分岔和非周期运动影响的方法.
本文分别对悬臂PC硬管和硅胶软管的动力学行为进行振动测试分析,研究流体流速、轴向激振力对悬臂输流管振动状态的影响,分析结构系统参数对输流管发生颤振失稳的临界流速的影响.
悬臂输流管的振动实验系统如图1所示,由变频恒压自吸增压泵将水由水箱通过不锈钢管输送到实验管中,再流回水箱,通过DH5871功率放大器和DH40050激振器来对系统作用不同频率和振幅的激振力.LWGY液体涡轮流量计可以对管道中的水流流量进行实时监测,IEPE压电式加速度传感器可以对输流管振动的加速度信号进行拾取,利用DH5922D动态信号测试分析系统以及DHDAS软件,对加速度传感器拾取到的加速度信号在电脑上进行监测记录,通过软件的二次积分功能将加速度信号处理成位移信号,再对所得到的位移数据进行振动分析.
图1 管道振动实验系统Fig.1 Experimental system of pipe vibration
悬臂输流管模型如图2所示,其中L为悬臂输流管长度,v为管内流体流速,F为激振力,x为管道轴向坐标,y为管道横向坐标.
图2 悬臂输流管模型Fig.2 Cantilever pipe model
本实验所使用的主要器材及参数如下:不锈钢实验台高 150cm,长 150cm,宽 120cm,厚度为0.9cm;水箱长宽高各90cm,厚度为1cm;不锈钢管为四分管;水泵为变频恒压自吸增压泵,最大功率为980W,输出口径为2.5cm;流量计为dn15螺纹的液体涡轮流量计;激振器的激振力峰值为50N,其最大振幅为±5mm,实验管为PC硬管和硅胶软管.实验步骤如下:
(1)选取一根实验管,对实验管尺寸参数进行测量,并将实验管连接到实验系统相应位置.
(2)将加速度传感器固定在输流管末端,打开动态信号测试分析系统及测试软件.
(3)打开水泵,缓慢调节流速,对不同流速下悬臂输流管的振动加速度变化分别进行记录.
(4)打开激振器,在悬臂输流管上加入不同频率和振幅的激振力,重复步骤(1)~步骤 (3).
(5)选用不同尺寸参数的输流管,重复步骤(1) ~步骤 (4).
(6)将所得加速度数据处理成位移数据,并对结果进行整理分析,进一步得到实验结论.
对长度为1m、内径为6mm、外径为8mm的PC硬管进行振动测试分析,图3为缓慢改变流速大小所得到的实验结果,结果表明随着流速的增大,悬臂输流管的振幅也在随之增大.
图3 不同流速下的振幅Fig.3 Amplitude at different flow velocity
打开激振器,研究激振力对悬臂输流管振动状态的影响,将振动形式设置为正弦扫频,激振力幅值为固定值,扫频范围为0~60Hz,扫频速度为0.5Hz/s,测试时间为240s,即激振频率从0Hz开始,之后逐渐增大到60Hz,再逐渐减小到0Hz,图4(a)为流速3.64m/s时的振动测试结果.为了研究流速对输流管固有频率的影响,改变流速进行相同的扫频实验,图4(b)和图4(c)分别为5.29m/s和6.68 m/s两种流速下的振动测试结果.测试结果表明在以上三种流速下,其最大振幅所出现位置均为38s和202s处,即均在激振频率为19Hz时振幅达到最大,因此,19Hz为PC悬臂输流管的固有频率,且随着流速的变化,其固有频率保持不变.
图4 三种流速下的扫频图Fig.4 Frequency sweep diagram at three flow velocity
图5为激振力幅值对悬臂输流管振动状态的影响,将水流流速调整为3.64m/s,振动形式设置为正弦定频,频率为15Hz,手动调节功率放大器旋钮,通过改变输出功率来改变输出激振力,缓慢转动旋钮增大激振力至最大处,此时激振力为50N,再减小激振力至0N.结果表明随着激振力幅值的增大,悬臂输流管的振幅也会随之增大,且在激振力幅值增大的某一瞬间,悬臂输流管振幅会突然增大,如图5(a)所示.随着激振力幅值的减小,悬臂输流管的振幅也会随着减小,且在激振力幅值减小的某一瞬间,悬臂输流管的振幅也会突然减小,如图5(b)所示.
图5 不同激振力幅值作用下的悬臂输流管振幅Fig.5 Amplitude of cantilever pipe conveying fluid under different excitation amplitudes
改变实验管材质,使用长度为1m、内径为6mm、外径为8mm的硅胶软管进行振动测试分析.图6为不同流速下悬臂输流管分别在激振力作用下和无激振力作用下振动所对应的振幅.结果表明,随着流速的增加,悬臂输流管的振幅也随之增加,并且在激振力的作用下,悬臂输流管在各流速下的振幅会比无激振力作用时有着明显的增加.在无激振力作用时,当管内流速达到5.50m/s时振幅由0.043cm突然增大到8.16cm,即由基本静止状态开始发生颤振失稳(即颤振),此时的流速即为颤振临界速度[17].在发生颤振后,随着流速的增大,悬臂输流管的振幅会随之增大,图7为流速5.50~6.29m/s时的振动类型,由波形图、幅值谱和相图可看出此时为单倍周期振动.当流速超过6.29m/s时振动类型发生改变,图8为在流速为6.29~6.68m/s时的振动情况,此时为混沌振动.
图6 不同流速下的振幅Fig.6 Amplitude at different flow velocity
图7 流速为5.60m/s时的波形图、幅值谱和相图Fig.7 Waveform,amplitude spectrum and phase portrait are given when flow velocity is 5.60m/s
图8 流速为6.59m/s时的波形图、幅值谱和相图Fig.8 Waveform,amplitude spectrum and phase portrait are given when flow velocity is 6.59m/s
图9为悬臂输流管的长度和壁厚对其颤振临界速度影响的测试结果.选择0.5m~1m范围内不同长度的悬臂输流管进行振动测试,结果表明,随着输流管长度的增加,悬臂输流管的颤振临界速度会减小,如图9(a)所示.选取内径为6mm,外径分别为8mm、9mm、10mm的硅胶软管进行振动测试,结果表明,当内径相同时,随着壁厚的增加,悬臂输流管的颤振临界速度会增大,如图9(b)所示.
图9 不同参数条件下的颤振临界速度Fig.9 Critical flutter velocity under different parameters
在PC硬管材料下,随着流速的增大,悬臂输流管的振幅会随之增大.在加入轴向基础激励后,悬臂输流管的振幅会随着激振频率的变化而改变,当激振频率为19Hz时悬臂输流管振幅达到最大,从而测得了PC硬管的固有频率,且随着流速的变化,其固有频率保持不变.随着激振力幅值的增大或减小,悬臂输流管的振幅也会随之增大或减小,且在激振力振幅增大或减小到某一数值,悬臂输流管的振幅会突然增大或突然减小.
在硅胶软管材料下,随着流速的增大,悬臂输流管的振幅也会随之增大.在悬臂输流管发生颤振后,当流速较小时,悬臂输流管的振动类型为单倍周期振动;当流速较大时,悬臂输流管的振动类型为混沌振动.悬臂输流管的颤振临界速度会随着悬臂输流管的长度增加而降低.当内径一定时,颤振临界速度随着壁厚的增大而增大.在轴向基础激励作用下,悬臂输流管的振幅也会发生明显的增大.
对两种材料悬臂输流管的动力学行为进行分析与对比,结果表明,硅胶软管在达到临界流速后发生颤振,并随着流速的增加有着较为丰富的动力学行为,而PC硬管相对于硅胶软管来说,实验所提供的流速不能够使其产生较为明显的动力学行为.