白学森
新能源汽车是当前汽车行业发展的趋势,具有信息化、网联化、智能化等特点。随着车载信息化程度的日益提升,车辆在驾驶过程中会产生海量的数据,对这些数据进行采集与储存,结合大数据分析技术挖掘数据背后的丰富价值,是当下的一个研究热点。基于大数据的智能网联化的新能源汽车,将是我国汽车行业转型升级的重点战略方向之一。
为优化新能源汽车的性能和解决汽车安全问题,需要完善新能源汽车监管体系,新能源车辆远程监控云平台应运而生。目前,我国新能源汽车大数据监管体系形成了企业监测平台、地方监管平台和国家监管平台的三级架构。车辆运行数据实时传递至企业监测平台,企业主要负责本企业新能源汽车安全监管,同时按照国标要求将车辆运行数据、统计信息以及故障信息实时上报给地方和国家平台。
由于企业监测平台接收的海量实时运行数据过于繁杂,缺乏直观性,企业对于企业监测平台的应用,仅局限于简单的车辆运行状态数据的采集和安全监管,无法发挥企业监测平台的潜力。此外,目前对于新能源车辆运营评价的方法大多依赖于构建独立的模拟实验,采集个别车辆的运行状态结合个别车辆的运行环境进行评价,又或者是直接通过计算机进行数据模拟,但模拟环境过于理想,数据过于单一,缺乏客观性和全面性。
为了全面、客观地分析新能源车辆的运营状态,本文以厦门金龙联合汽车工业有限公司(以下简称金龙客车)新能源远程监控云平台为例,结合大数据分析技术,从运营道路状态评价、运营环境温度分析、驾驶行为评价、充电情况评价、动力元件工作点评价、整车能耗评价和整车故障统计7个维度上,对新能源车辆的性能及运营状态进行多维度、客观、全面的自动化分析,自动呈现评价报告,计算效率快,可视化程度高,能为车辆的性能提升与能耗优化提供数据参考,又不需要额外增加成本。具体的总架构如图2所示。
基于大数据分析的新能源车辆运营评价方法包括以下步骤。
(1)新能源车辆远程监控云平台通过无线网络通讯技术与新能源车辆的车载终端进行通讯,实时记录车载终端反馈的新能源车辆运行数据,形成大数据库。
(2)操作平台(操作平台为计算机,俗称电脑,电脑上安装远程监控云平台服务端,连接监控云平台的数据库)上输入指定车辆的标识号(标识号可以为车辆的车号、车牌号或者车载终端号),操作平台链接所述远程监控云平台的大数据库,抽取该标识号所对应的车载终端反馈的车辆运行数据,进行以下7个维度的数据分析及评价。
①运营道路状态评价
操作平台基于车载终端实时上传至监控云平台的行车GPS数据信息、整车车速和行驶里程CAN数据,分析出车辆行驶里程、平均车速以及该行驶里程的坡度信息,形成数据报表。其中,行驶里程的坡度信息优选为显示运营道路实时坡度数值变化趋势图。行车GPS数据信息包括经度、纬度和GPS高程数据,将经度和纬度经过高斯变化投影至平面坐标,再结合高程数据,获得道路坡度值;根据整车车速CAN数据以及行驶里程CAN数据实现平均车速与行驶里程的分析,获取车辆行驶里程和平均车速。
②运营环境温度分析
操作平台基于车载终端实时上传至监控云平台的电空调的CAN数据,解析出车内实时温度和空调工作时长,形成数据报表,其中,车内实时温度优选为车内实时温度变化趋势图。电空调的CAN数据包括车内温度CAN信号、空调电流信号、空调电压信号和空调设置温度信号,通过对车内温度CAN信号的解析,获取车内实时温度;根据空调工作电流信号大于设定的阈值,判断空调为工作状态,并累计工作时长,获取空调工作时长。
③驾驶行为评价
操作平台基于车载终端实时上传至监控云平台的行车GPS数据信息、整车车速、油门踏板开度信号和刹车踏板开度信号,分析出车辆行驶过程中的急加速行为次数、急减速行为次数、疲劳驾驶次数和超速行为次数,形成数据报表。整车速度包括实时车速和加速度,基于加速度大小、油门踏板开度信号和刹车踏板开度信号,当加速度大于设定阈值a或油门踏板前后时刻开度变化大于80%或者连续3s加速度大于设定阈值b,累计一次急加速行为;当加速度小于设定阈值c,累计一次急减速行为;连续行驶时间超过4小时,累计一次疲劳驾驶行为;根据行车GPS数据信息获取当前路况允许最高车速,当实时车速大于路况允许最高车速,累计一次超速行为。
④充电情况评价
操作平台基于车载终端实时上传至监控云平台的充电链接信号、电池电流信号及电池SOC信息,分析是否处于外接充电状态,并累计充电次数和充电时长,形成数据报表。当车速为0、充电链接信号为1、电池电流为负值且电池SOC为上升时,判断为一次外接充电状态,累计一次外接充电次数,并根据充电时长算法分别累计单次充电时长和总累计充电时长。
⑤动力元件工作点评价
操作平台基于车载终端实时上传至监控云平台的电机转速、电机扭矩信号、发动机转速和发动机扭矩信号,关联所匹配的电机和发动机的台架测试数据,分析得出电机工况点分布、电机工况点效率分析、发动机工况点分布和发动机工况点效率分析,形成数据报表。其中,电机转速、电机扭矩、发动机转速、发动机扭矩信息为实时数值变化趋势图;电机、发动机工况点分布为显示实时转速与扭矩信息的MAP散点图。基于电机转速和电机扭矩信息,并根据车辆的标识号,关联该车辆所匹配的电机的台架测试数据,将电机的工作点,即电机的实时转速与扭矩信息绘制台架测试的MAP图上,插值完成效率分析,得出电机的实时效率,绘制电机工况点的MAP散点图并进行电机转速与扭矩的分布区间统计,形成电机工况点分布与电机工况点效率分析报表。基于发动机转速和发动机扭矩信息,并根据车辆的标识号,关联该车辆所匹配的发动机的台架测试数据,将发动机的工作点,即发动机的实时转速与扭矩信息绘制至台架测试的MAP图上,插值完成效率分析,得出发动机的实时效率,并绘制发动机工况点的MAP散点图并进行发动机转速与扭矩的分布区间统计,形成发动机工况点分布与发动机工况点效率分析报表。
⑥整车能耗评价
操作平台基于车载终端实时上传至监控云平台的新能源车上的各个高压零部件的电压、电流和输出功率信号,计算出各个高压零部件的总能耗,再结合里程数据计算出各个高压零部件的百公里能耗,形成数据报表。各个高压零部件的电压、电流和输出功率信号包括TM电机的直流母线电压、TM电机的直流母线电流、电池的电压、电池的电流、DCDC的电流信号、DCDC的电压信号、打气泵输出功率、转向泵输出功率、电子风扇输出功率和电空调输出功率。TM电机、电池和DCDC无输出功率CAN信号,先根据电流信号I与电压信号U计算实时输出功率P=UI,得出TM电机端输出功率、电池端输出功率和DCDC输出功率,再分别对TM电机端输出功率、电池端输出功率、DCDC输出功率、打气泵输出功率、转向泵输出功率、电子风扇输出功率和电空调输出功率进行各自的时间T积分计算,得出各个高压零部件的总能耗值E,进一步的分别结合行驶里程数据S,进行计算百公里能耗e=100E/S,得出各个高压零部件的百公里能耗。通过对电池负电流工况的分析,积分计算电池端电流小于零的部分功耗为制动能量回收能量,结合电池总能耗进行制动能量回收率的计算,最终分别形成包含电机端能耗分析报表、电池端能耗分析报表、DCDC能耗分析报表、打气泵能耗分析报表、转向泵能耗分析报表、电子风扇能耗报表、电空调能耗分析报表和制动能量回收分析的综合报表。
⑦整车故障统计
操作平台基于车载终端实时上传至监控云平台的整车实时故障信息,根据故障部位以及故障等级,进行故障统计,形成数据报表。整车实时故障信息包括整车故障信息、电池故障信息、电机故障信息、油门故障信息、刹车故障信息和电附件故障信息,按照故障不同等级(整车通常根据故障的严重程度分为4级,分别为一级、二级、三级、四级),累计各故障等级的故障次数。
本文结合大数据分析技术,基于新能源远程监控云平台,通过构建运营道路状态评价、运营环境温度分析、驾驶行为评价、充电情况评价、动力元件工作点评价、整车能耗评价和整车故障统计7个维度上的评价分析方法,实现对投放市场的新能源车辆运营状态的多维度、客观且全面的自动化分析,一方面可以挖掘数据背后车辆在全生命周期内的核心部件的工作状态,为部件的疲劳寿命评估及设计提供依据,另一方面对整车能耗优化及整车运行安全提供及时和准确的数据,确保车辆的安全运行,对新能源车辆的性能提升及优化具有重大的意义。