几个-预不变凸函数的分数阶积分不等式及在数值积分中的应用

2022-06-02 08:14孙文兵谢文平
浙江大学学报(理学版) 2022年3期
关键词:邵阳定理误差

孙文兵,谢文平

(邵阳学院 理学院,湖南 邵阳 422000)

孙文兵,谢文平

(邵阳学院 理学院,湖南 邵阳 422000)

构造了一个带参数的Riemann-Liouville分数阶积分恒等式,得到几个关于-预不变凸函数的带参数的分数阶积分不等式。当参数取特殊值时,分别得到了“中点型”“梯形型”和“Simpson型”积分不等式。利用构建的不等式得到了几个经典数值积分的误差估计式。

-预不变凸函数;Hermite-Hadamard 型不等式;Simpson型不等式;Riemann-Liouville分数阶积分;误差估计

0 引言

具有某种凸性的函数往往具备一些良好的性质,因此凸函数在工程、经济等领域应用广泛。不少著名不等式的建立或改进也与函数凸性有关,如Hermite-Hadamard积分不等式、Simpson积分不等式等。

定理1(Hermite-Hadamard积分不等式) 设为凸函数,若且,则有

长期以来,学者对Hermite-Hadamard和Simpson积分不等式进行了不断推广和改进,一是从函数凸性角度,因为实际问题中函数难以满足经典凸性的条件,但可满足某种广义凸性,因此通过推广凸函数的定义对不等式进行改进具有一定实际意义,如文献[1-6];二是从引入参数角度,通过改变参数调整不等式,使不等式具有更广的适用性,如文献[7]。近年来,这几类不等式被推广至分数阶积分领域,如Riemann-Liouville分数阶[8]、共形分数阶[9-10]、局部分数阶[11-13]等。笔者基于上述不等式改进思想,对具有-预不变凸性[14]的函数构建了几个带参数的Riemann-Liouville分数阶积分不等式。当参数取特殊值时,可得到“中点型”“梯形型”和“Simpson型”等特殊形式的积分不等式,利用构建的不等式还得到了几个经典数值积分的误差估计式。

1 预备知识

2 主要结果及证明

证明 对等式右边部分分别进行分部积分,得到

同理

式(2)加式(3),可得式(1)。

证明 由引理1及模的性质,可得

由式(5)和式(6),计算可得式(4)。

定理3得证。

其中,

定理4得证。

证明 对引理1的不等式两边取模,利用Hölder不等式以及为-预不变凸函数,可得

定理5得证。

3 在数值积分中的应用

所以

命题1得证。

所以

命题2得证。

所以

命题3得证。

[1]ANASTASSIOU G, KASHURI A,LIKO R. Local fractional integrals involving generalized stronglym-convex mappings[J]. Arabian Journal of Mathematics,2019(8): 95-107. DOI:10.1007/s40065-018-0214-8

[2]KASHURI A, LIKO R. Some different type integral inequalities concerning twice differentiable generalized relative semi-(r;m,h)-preinvex mappings[J]. Tbilisi Mathematical Journal, 2018,11(1): 79-97. DOI:10.2478/tmj-2018-0006

[3]LIAO J G, WU S H, DU T S. The Sugeno integral with respect toα-preinvex functions[J]. Fuzzy Sets and Systems, 2020(379):102-114. DOI:10.1016/j.fss.2018.11.008

[4]NOOR M A, NOOR K I,RASHID S. Some new classes of preinvex functions and inequalities[J]. Mathematics. 2019,7(1): 1-16. DOI:10.3390/ math7010029

[5]SUN W B, LIU Q. New Hermite-Hadamard-type inequalities for (α,m)-convex functions and applications to special means[J]. Journal of Mathematical Inequalities, 2017,11(2): 383-397. DOI:10.1016/j.fss.2018.11.008

[6]孙文兵. 关于(h,m)-凸函数乘积的Hadamard-型不等式及应用(英文)[J]. 中国科学院大学学报,2018, 35(2):145-153. DOI:10.7523/j.issn.2095-6134. 2018.02.001

SUN W B. Hadamard-type inequalities for products of (h,m)-convex functions and their applications[J]. Journal of University of Chinese Academy of Sciences, 2018,35(2): 145-153. DOI:10. 7523/j. issn.2095-6134.2018.02.001

[7]SARIKAYA M Z, AKTAN N. On the generalization of some integral inequalities and their applications[J]. Mathematical and Computer Modelling, 2011,54(9/10):2175-2182. DOI:10.1016/j.mcm.2011. 05.026

[8]孙文兵.分数次积分下关于S-凸函数的新Hermite-Hadamard型不等式[J]. 浙江大学学报(理学版), 2017,44(5): 531-537. DOI:10.3785/j.issn.1008-9497.2017.05.006

SUN W B. New Hermite-Hadamard type inequalities forS-convex functions via fractional integrals[J].Journal of Zhejiang University (Science Edition), 2017,44(5): 531-537. DOI:10. 3785/j.issn.1008-9497.2017.05.006

[9]SET E, SARIKAYA M Z,GÖZPINAR A. Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities[J]. Creative Mathematics and Informatics, 2017,26(2): 221-229. DOI:10.37193/CMI.2017.02.11

[10]KASHURI A, IQBAL S,LIKO R, et al. Integral inequalities fors-convex functions via generalized conformable fractional integral operators[J]. Advances in Difference Equations, 2020(2020):217. DOI:10.1186/s13662-020-02671-4

[11]SUN W B. Some new inequalities for generalizedh-convex functions involving local fractional integral operators with Mittag-Leffler kernel[J]. Mathematical Methods in the Applied Sciences, 2021, 44(6):4985-4998. DOI:10.1002/mma.7081

[12]SUN W B. Some local fractional integral inequalities for generalized preinvex functions and applications to numerical quadrature[J]. Fractals,2019, 27(5):1950071. DOI:10.1142/S0218348X19500713

[13]DU T S, WANG H,KHAN M A, et al. Certain integral inequalities considering generalizedm-convexity on fractal sets and their applications[J]. Fractals,2019, 27(7):1950117.DOI:10.1142/S0218348X19501172

[14]NOOR M A, NOOR K I,AWAN M U, et al. On Hermite-Hadamard inequalities forh-preinvex functions[J]. Filomat,2014, 28(7):1463-1474. DOI:10.2298/FIL1407463N

[15]WEIR T, MOND B. Preinvex functions in multiple objective optimization[J]. Journal of Mathematical Analysis and Applications, 1988,136(1): 29-38. DOI:10.1016/0022-247X(88)90113-8

[16]WEIR T, JEYAKUMAR V. A class of nonconvex functions and mathematical programming[J]. Bulletin of the Australian Mathematical Society, 1988,38: 177-189. DOI:10.1017/S0004972700027441

Some fractional integrals inequalities for-preinvex functions and applications to numerical integration

SUN Wenbing, XIE Wenping

(School of Science,Shaoyang University,Shaoyang422000,Hunan Province,China)

An identity with parameters is constructed via Riemann-Liouville fractional integrals. With that, we derive some fractional integrals inequalities with parameters for-preinvex functions. The quot;midpoint typequot;, quot;trapezoidal typequot; and quot;Simpson typequot; integral inequalities are obtained respectively when the parameters are given special values. Finally, the error estimates of numerical integration are proposed to illustrate the applications of the results.

-preinvex functions; Hermite-Hadamard type inequalities; Simpson type inequalities; Riemann-Liouville fractional integrals; error estimation

O 178

A

1008⁃9497(2022)03⁃308⁃08

10.3785/j.issn.1008-9497.2022.03.007

2021⁃03⁃22.

湖南省教育厅重点项目(21A0472);湖南省自然科学基金资助项目(2020JJ4554);湖南省普通高等学校教学改革研究项目(湘教通〔2019〕291号(787)).

孙文兵(1978—),ORCID:https://orcid.org/0000-0002-5673-4519,男,硕士,副教授,主要从事解析不等式研究,E-mail:swb0520@163.com.

猜你喜欢
邵阳定理误差
J. Liouville定理
聚焦二项式定理创新题
CBCT图像引导的放疗前后半程摆位误差分析
寻梦
A Study on English listening status of students in vocational school
隧道横向贯通误差估算与应用
隧道横向贯通误差估算与应用
精确与误差
压力表非线性误差分析与调整
一个简单不等式的重要应用