胡蓉
摘要:本文研究C中单位球上Volterra型积分算子I从Hardy空间H到H的有界性和紧性,利用调和分析中的面积法以及序列Tent空间的分解,将0<p<q<∞及p=q=2时,I:H→H的有界性和紧性结论进行推广,给出所有指标0<p,q<∞对应的等价刻画。
关键词:Volterra型积分算子;Hardy空间;序列Tent空间;单位球
中图分类号:O177文献标志码:A
Volterra型积分算子在各类全纯函数空间上的有界性和紧性问题一直受到学者们的广泛研究[1-12]。POMMERENKE首先刻画了J在单位圆盘上Hardy空间H上的有界性[1];之后ALEMAN等研究了J在单位圆盘上Hardy空间、Bergman空间上的有界性和紧性问题[2-4]。单位球上的相关结论首先是HU在文献[5]中给出J在混合范数空间H(φ)上的有界性和紧性刻画;接着LI等研究了J和I在单位球上Bergman空间、Bloch空间以及Hardy空间(p=2时)上的有界性和紧性问题[6-8];AVETISYAN等给出了J和I在单位球上Hardy空间H到H(0<p<q<∞)上的有界性和紧性等价刻画[9];PAU在文献[10]中将[8]和[9]的结论进行推广,借助调和分析中的面积法给出Jb在单位球上Hardy空间H到H(0<p,q<∞)上的有界性刻画,在证明q<p时进行了多种情况的分类转化讨论;MIIHKINEN等在文献[11]中借助序列Tent空间的分解,较为简洁地刻画了J在单位球上Bergman空间到Hardy空间上的有界性;文献[12]利用该方法进一步给出J紧性的等价刻画。本文将借助文献[11]的方法,研究算子I從H到H(0<p,q<∞)的有界性和紧性问题,所得结论一方面是对文献[8]和[9]中关于算子Ib有界性和紧性刻画的推广,另一方面在讨论q<p时所采用的方法较文献[10]来说是一种新的尝试。
1 基本定义
2 预备知识
2.1 面积定理及容许极大函数
2.2 可分序列和格
2.3 Khinchine和Kahane不等式
2.4 序列Tent空间
3 主要结果及证明
4结语
参考文献:
[1]POMMERENKE C. Schlichte funktionen und analytische funktionen von beschrnkter mittlerer oszillation[J]. Comment Math Helvetici, 1977, 52(4): 591-602.
[2] ALEMAN A, CIMA J A. An integral operator on Hpand Hardy's inequality[J]. Journal d'Analyse Mathématique, 2001, 85(1): 157-176.
[3] ALEMAN A, SISKAKIS A G. Integration operators on Bergman spaces[J]. Indiana University Mathematics Journal, 1997, 46(2): 337-356.
[4] WU Z J. Volterra operator, area integral and Carleson measure[J]. Science China Mathematics, 2011, 54 (11): 2487-2500.
[5] HU Z J. Extend cesáro operators on mixed norm spaces[J]. Proceedings of the American Mathematical Society, 2003, 131(7) :2171-2179.
[6] LI S X, STEVIC′ S. Riemann-Stieltjes operators between different weighted Bergman spaces[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2008, 15(4): 677-686.
[7] LI S X, STEVIC′ S. Riemann-Stieltjes-type integral operators on the unit ball in Cn[J]. Complex Variables and Elliptic Equations,2007, 52 (6): 495-517.
[8] LI S X, STEVIC′ S. Riemann-Stieltjes operators on Hardy spaces in the unit ball of Cn[J]. Bulletin of the Belgian Mathematical Society. Simon Stevin, 2007, 14(4): 621-628.
[9] AVETISYAN K, STEVIC′ S. Extended Cesàro operators between different Hardy spaces[J]. Applied Mathematics and Computation, 2009,207 (2):346-350.
[10]PAU J. Integration operators between Hardy spaces on the unit ball of Cn[J]. Journal of Functional Analysis,2016 ,270(1): 134-176.
[11]MIIHKINEN S, PAU J, PERL A, et al. Volterra type integration operators from Bergman spaces to Hardy spaces[J]. Journal of Functional Analysis, 2020, 279(4): 32 pp.
[12]CHEN J L, PAU J, WANG M F. Essential norms and Schatten(-Herz) classes of integration operators from Bergman spaces to Hardy spaces[J]. Results in Mathematics, 2021, 76(2): 33 pp.
[13]CALDERN A P. Commutators of singular integral operators[J]. Proceedings of the National Academy of Sciences of the United States of America, 1965, 53(5): 1092-1099.
[14]ZHU K H. Spaces of holomorphic functions in the unit ball[M]. New York: Springer-Verlag, 2005.
[15]DUREN P L. Theory of spaces[M]. New York: Academic Press, 2000.
(責任编辑:于慧梅)
Volterra Type Integration Operators on Hardy Spaces
HU Rong
(1.School of Mathematics, Sichuan University of Arts and Science, Dazhou 635000,China;
2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072,China)Abstract: This paper discusses the boundedness and compactness of the Volterra type integration operators Ib between Hardy spaces in the unit ball of Cn. By using the area methods from harmonic analysis and the factorization tricks for Tent spaces of sequences, we generalize the conclusions when 0<p<q<∞ or p=q=2, and give a characterization for all case when 0<p,q<∞.
Key words: Volterra type integration operators; Hardy spaces; Tent spaces of sequences; unit ball.