具有非线性项的弱耦合半线性Moore-Gibson-Thompson系统解的全局非存在性

2022-05-10 10:26欧阳柏平肖胜中
关键词:爆破

欧阳柏平 肖胜中

摘要:考慮了一类非线性项的弱耦合半线性Moore-Gibson-Thompson(MGT)系统柯西问题解的爆破现象。在次临界情况下,运用泛函分析和迭代方法推出了其解的全局非存在性。另外,证明了其解的生命跨度的上界估计。

关键词:非线性项;Moore-Gibson-Thompson系统;爆破

中图分类号:O175.4文献标志码:A

Moore-Gibson-Thompson(MGT)方程在实际中有广泛的应用[1-3]。物理上,其可描述波在粘性热松弛流体中的传播,数学模型为

τu+u-cΔu-bΔu=0

式中:u为声速势函数,u=u(t,x);c为声速;b为声扩散率,b=βc;τ为松弛因子,τ∈(0,β]。半群理论指出,当τ=β时,不存在半群指数稳定性。

更多半线性MGT方程解的全局存在和爆破问题等解的性态的相关研究,请参考文献[4-12]。

文献[13]考虑了如下非线性项的半线性MGT方程解的爆破问题

在次临界和临界2种情况下,作者主要利用迭代技巧和测试函数方法证明了其柯西问题解的全局非存在性,进一步推出了2种情况下其解的生命跨度上界估计。

一些文献[14-19]探讨了下面具有非线性项的弱耦合半线性波动系统解的爆破问题

本文目标主要是分析弱耦合半线性MGT系统中非线性项对解的爆破以及生命跨度的影响。生命跨度(lifespan)指的是保证解存在的时间区间最大长度[20]。与近期的工作[13]相比,本文考虑的是非线性弱耦合系统解的爆破。对于式(1)满足β=β且p=q时,弱耦合问题(1)将一定程度退化为单个的非线性MGT方程;但是当p≠q时,本文所研究的模型并不是单个方程的简单推广。由于右端弱耦合现象的出现,使得临界曲线的非对称区域研究更为复杂;而对比经典的弱耦合波动方程的研究[14-19],由于关于时间的高阶导出现,使得无界乘子产生较大作用,同时也使得经典的反射法、迭代法均不适用。因此,本文发展的在弱耦合非线性MGT方程组中研究解的爆破准则并不是前人工作的简单推广。

另外,由于无界乘子的引入,导致无法应用Kato引理研究其解的爆破情况。因此,本文运用近年来学者提出的处理某些高阶双曲方程解的爆破问题的迭代技巧[21-27],辅之以测试函数和相关的泛函分析方法进行研究。其中,如何选择适合的测试函数进行迭代是难点。本文通过构造恰当的能量泛函以及利用微分不等式技巧得到了其下界序列,进一步迭代,证明了非临界情况下具有非线性项的弱耦合半线性MGT系统柯西问题解的全局非存在性,以及解的生命跨度的上界估计。

1 主要结果

首先定义问题(1)的柯西问题能量解:

参考文献:

[1]CRIGHTON D G. Model equations of nonlinear acoustics[J]. Annual Review of Fluid Mechanics, 1979, 11(1): 11-33.

[2] JORDAN P M. Nonlinear acoustic phenomena in viscous thermally relaxing fluids: shock bifurcation and the emergence of diffusive solitons[J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2491.

[3] KALTENBACHER B, LASIECKA I, MARCHAND R. Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Control and Cybernetics, 2011, 40(4): 971-988.

[4] ALVES M O, CAIXETA A H, SILVA M A J, et al. Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2018, 69: 19.

[5] CAIXETA A H, LASIECKA I, DOMINGOS CAVALCANTI V N. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation[J]. Evolution Equations and Control Theory, 2016, 5: 661-676.

[6] DELL′ORO F, LASIECKA I, PATA V. A note on the Moore-Gibson-Thompson equation with memory of type II[J]. Journal of Evolution Equations, 2020, 20: 1251-1268.

[7] DELL′ORO F, LASIECKA I, PATA V. The Moore-Gibson-Thompson equation with memory in the critical case[J]. Journal of Differential Equations, 2016, 261: 4188-4222.

[8] DELL′ORO F, PATA V. On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity[J]. Applied Mathematics and Optimization, 2017, 76: 641-655.

[9] LASIECKA I. Global solvability of Moore-Gibson-Thompson equation with memory arising in nonlinear acoustics[J]. Journal of Evolution Equations, 2017, 17: 411-441.

[10]LASIECKA I, WANG X J. Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2016, 67: 23.

[11]PELLICER M, SAID-HOUARI B. Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Applied Mathematics and Optimization, 2019, 80: 447-478.

[12]PELLICER M, SOL-MORALES J. Optimal scalar products in the Moore-Gibson-Thompson equation[J]. Evolution Equations and Control Theory, 2019, 8: 203-220.

[13]CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40: 5513-5540.

[14]AGEMI R, KUROKAWA Y, H. TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1): 87-133.

[15]DEL SANTO D, MITIDIERI E. Blow-up of solutions of a hyperbolic system: the critical case[J]. Differential Equations, 1998, 34 (9): 1157-1163.

[16]GEORGIEV V, TAKAMURA H, ZHOU Y. The lifespan of solutions to nonlinear systems of a high dimensional wave equation[J]. Nonlinear Analysis, 2006, 64(10): 2215-2250.

[17]KUROKAWA Y. The lifespan of radially symmetric solutions to nonlinear systems of odd dimensional wave equations[J]. Tsukuba Journal of Mathematics, 2005, 60(7): 1239-1275.

[18]KUROKAWA Y, TAKAMURA H. A weighted pointwise estimate for two dimensional wave equations and its applications to nonlinear systems[J]. Tsukuba Journal of Mathematics, 2003, 27 (2): 417-448.

[19]KUROKAWA Y, TAKAMURA H, WAKASA K. The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions[J]. Differential Integral Equations, 2012, 25(3/4): 363-382.

[20]李大潛, 周忆. 非线性波动方程[M]. 上海: 上海科学技术出版社, 2015.

[21]CHEN W H, PALMIERI A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case[J/OL]. Evolution Equations and Control Theory, (2019-09-20)[2021-06-22].https://arxiv.org/abs/1909.09348.DOI:10.3934/eect.2020085.

[22]CHEN W H, IKEHATA R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case[J]. Journal of Differential Equations, 2021, 292: 176-219.

[23]CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202: 112160.1-112160.23

[24]CHEN W H, REISSIG M. Blow-up of solutions to Nakao′s problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275: 733-756.

[25]CHEN W H, PALMIERI A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part[J]. Zeitschrift für Angewandte Mathematik und Physik, 2019, 70(2): 67.

[26]LAI N A, TAKAMURA H, WAKASA K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent[J]. Journal of Differential Equations, 2017, 263: 5377-5394.

[27]PALMIERI A, TAKAMURA A. Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities[J]. Nonlinear Analysis, 2019, 187: 467-492.

[28]陳国旺. 索伯列夫空间导论[M]. 北京: 科学出版社, 2013.

[29]YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231 (2): 361-374.

[30]LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey conjecture[J]. Differential Integral Equations, 2019, 32: 37-48.

(责任编辑:周晓南)

Nonexistence of Global Solutions to a Weakly Coupled Semilinear

Moore-Gibson-Thompson System with Nonlinear Terms

OUYANG Baiping XIAO Shengzhong

(1.Guangzhou Huashang College, Guangzhou 511300, China; 2.Guangdong AIB Polytechnic College, Guangzhou 510507, China)Abstract: Blow-up of solutions to the Cauchy problem for a weakly coupled semilinear Moore-Gibson- Thompson(MGT) system with nonlinear terms is considered. Nonexistence of global solutions to the Cauchy problem for the semilinear MGT equation in the subcritical case is derived by applying functional analysis and iteration methods. Additionally, an upper bound estimate of solutions for the lifespan is proved.

Key words: nonlinear term; Moore-Gibson-Thompson system; blow-up

猜你喜欢
爆破
紧邻次高压燃气管线小间距隧道控制爆破施工技术及安全防护
浅谈水利工程施工中高边坡支护与开挖技术的应用
安哥拉道碴厂露天爆破施工技术
在松散岩土层条件下如何进行快速掘进爆破技术探究
地面减震孔在地铁侧穿加油站爆破施工中的应用
浅孔台阶静力爆破技术在基坑开挖中的应用