林军章, 王 静, 汪卫东, 冯 云, 谭晓明, 丁明山
(1.中国石化微生物采油重点实验室,山东东营 257000; 2.中国石化胜利油田分公司石油工程技术研究院,山东东营 257000)
生物表面活性剂是一类由微生物代谢产生的表面活性物质,包括糖脂、脂肽、脂蛋白、脂肪酸、磷脂及中性衍生物等5种类型[1]。生物表面活性剂分子结构上带有脂肪烃链构成的非极性疏水基,以及极性的亲水基,拥有化学方法难以合成的功能基团,分子结构复杂,具有较低的临界胶束浓度(CMC)[2]。生物表面活性剂有良好的耐温抗盐性和较高的界面活性,提高驱油效率显著[3-5],其应用研究多集中在菌种的筛选、分子结构表征和驱油性能评价等方面[6-9]。降低油水界面张力、乳化残余油和润湿性改善是生物表面活性剂提高采收率的主要机制[10]。研究[11-14]表明,同化学表面活性剂一样,分子结构上的差异是导致不同类型生物表面活性剂驱油功能不同的根本原因,而目前有关于其构效关系的认识仍较浅,制约了生物表面活性剂在油田开发中的应用。笔者对油田开发中常用的生物表面活性剂(槐糖脂、鼠李糖脂和脂肽)进行界面张力、乳化降黏、润湿性能及驱油效率评价,分析生物表面活性剂的主导驱油机制。
试验中使用的鼠李糖脂、槐糖脂和脂肽分别由本实验室保藏的铜绿假单胞菌TG-3、酵母菌HD-2和枯草芽孢杆菌TH-2在室内条件下发酵获得,属于粗提产品。采用薄层层析法对上述3种生物表面活性剂粗提物进行鉴定,其中糖脂类使用蒽酮显色剂,脂肽使用茚三酮显色剂。结果显示,鼠李糖脂和槐糖脂显黑蓝色,脂肽显红色,说明3种粗提物为对应的生物表面活性剂。生物表面活性剂典型的分子结构[15-17]见图1。试验中使用原油取自东辛采油厂辛68区块X140井,使用前经脱水和脱气处理,辛68X140油藏温度为90 ℃,50 ℃原油黏度为5 812 mPa·s,20 ℃原油密度为0.953 4 g/cm3,原油凝点为30 ℃,总矿化度为52.411 g/L。配制溶液时,如未做说明,均使用试验区块配注水。
图1 生物表面活性剂的结构Fig.1 Structure of biosurfactants
使用试验区块配注水配制质量浓度为1 g/L生物表面活性剂溶液,利用旋转滴界面张力仪(TX500C,CNG)测试3种溶液与原油间的界面张力。测试温度为50 ℃,测试转速为6 000 r/min。
通过析水率计算评价生物表面活性剂对原油的乳化性能。使用辛68X140试验区块配注水配制质量浓度为1 g/L的生物表面活性剂溶液。将5 mL上述生物表面活性剂溶液和5 mL的X140原油加入到10 mL具塞刻度试管内,随后置于90 ℃恒温箱内30 min。试管取出后均匀振荡200次,然后再次置于90 ℃恒温箱内,同时开始计时,每隔5 min记录试管中分离出水的体积,计算析水率,其公式为Ed=Vw/V。式中,Ed为析水率;Vw为析水量,mL;V为制备乳状液时的水相体积,mL。
使用试验区块配注水配制质量浓度为1 g·L-1生物表面活性剂溶液,利用黏度仪测试作用后黏度变化。称取100 g试验区块原油在50 ℃下恒温2 h,加入43 g生物表面活性剂溶液,用玻璃棒缓慢搅拌原油5 min,使原油形成水包油型乳状液,后在显微镜下观察乳状液,并测定其黏度。
分别采用接触角法[18]和Amott自吸法[19]评价生物表面活性剂的润湿性能。在采用接触角法评价时,将单晶硅片切割为1.5 cm×1.5 cm,以piranha溶液 (98% H2SO4∶30% H2O2,7∶3,体积比)在90 ℃下清洗30 min,获得完全亲水基底表面.[20]。待硅片表面干燥后,置于质量分数为20%的甲苯-原油溶液中,浸泡处理3 d,使原油组分在基底表面达到吸附平衡。取出后置于通风橱内使甲苯挥发,随后在70 ℃恒温箱内老化7 d,使基底表面疏水化。以甲苯冲洗清洗基底表面原油,自然风干后获得疏水性基底表面。配制质量浓度为1 g/L的生物表面活性剂溶液,将疏水性基底置于上述溶液中处理。利用接触角测量仪(上海中晨,JC2000C)测试基底润湿性变化。测试温度25±1 ℃,每片样品测试3个点,测试3组样品并取平均值。
利用Amott自吸法评价生物表面活性剂对岩石润湿性的影响。试验使用胶结岩心,岩心直径为2.5 cm,长度为10 cm,孔隙度和水测渗透率分布范围为28.3%~31.7%和(798.0~812.2)×10-3μm2。试验过程对岩心进行老化处理,即在油藏温度和压力条件下将岩心的润湿性恢复到原始地层状态,老化时间为30 d。老化结束后,开展Amott岩心自吸试验[21]。
利用一维管式模型评价生物表面活性剂的驱油效率。用石英砂装填与试验区块渗透率大致相同的岩心,岩心管(Φ600 mm×38 mm),使用试验区块产出液和原油(脱水、脱气处理),试验温度同试验区块油藏温度一致。在油藏温度下,对填砂岩心饱和水、饱和油,老化后一次水驱。水驱至区块目前含水后停止。注入0.3VP(VP为孔隙体积)生物表面活性剂溶液,随后水驱至含水98%结束。记录驱替过程含水、出油量和压力变化。按照相同的方法,在注入0.3VP生物表面活性剂溶液后,关闭阀门7 d,使生物表面活性剂充分作用。到设定时间后打开阀门,二次水驱至含水98%结束。根据记录数据,计算驱油效率。
测试鼠李糖脂、槐糖脂和脂肽等3类生物表面活性剂与试验区块原油间的界面张力。结果显示,鼠李糖脂与原油间的界面张力为0.68 mN·m-1,槐糖脂与原油间的界面张力为3.24 mN·m-1,脂肽与原油间的界面张力为0.37 mN·m-1间。从测试结果可以看出,3种生物表面活性剂均能有效降低与原油间的界面张力,其数值在10-1mN·m-1数量级,这一结果与目前报道的数据相近[22-23]。从分子结构上看(图1),鼠李糖脂、槐糖脂或脂肽均为阴离子型表面活性剂,分子头基由亲水性的糖基、羧基或酰胺基团组成,结构较大,在界面吸附后界面密度低[24],单独使用时油水界面张力难以达到超低。在实际应用中,为了获得超低界面张力体系,需要与其他助剂复合使用。
利用析水率评价生物表面活性剂作用原油后形成水包油型乳状液的稳定性,析水率数值越小,说明乳状液越稳定,体系的乳化性能越强。图2为3种生物表面活性剂乳化原油后的析水率,鼠李糖脂的在200 min后析水率基本达到稳定,最终析水率约为70%,脂肽在80 min后析水率递增减慢,最终析水率约为82%,这说明鼠李糖脂和脂肽对原油的乳化能力较弱,形成的乳状液较容易破乳。槐糖脂表现出较强的原油乳化性能,形成的乳状液保持良好的稳定性,400 min后析水率仍保持在25%。
图2 生物表面活性剂作用试验区块原油形成的 乳状液析水率随时间的变化Fig.2 Time course of rate of water evolution of crude oil emulsified by various biosurfactants solutions
利用显微镜观察生物表面活性剂作用原油后形成的乳状液,结果见图3。可以看出,生物表面活性剂能够将原油乳化分散到水相,形成O/W型乳状液。其中,相比于鼠李糖脂和脂肽,槐糖脂作用后形成的乳化油滴数目多,油滴平均粒径较小,约为10 μm,并且粒径分布较窄,因此乳状液更为稳定。而鼠李糖脂或脂肽作用形成的乳状液,液滴数目少、粒径较大,分布范围宽,稳定性要差。从3种生物表面活性剂的亲水亲油值(HLB)来看,槐糖脂的HLB值在9~12之间[25],属于典型的乳化剂,因此对原油有较强的乳化性能。而鼠李糖脂和脂肽的HLB值大于12[26],属于清洗剂范围,乳化原油的作用弱。而这一结果可用于解释槐糖脂作用形成的乳状液析水率最低的现象。
油样原始黏度为5 812 mPa·s,经鼠李糖脂、槐糖脂和脂肽生物表面活性剂作用后,黏度分别下降至1 853 、862和2 267 mPa·s。其中槐糖脂降黏效果最突出,降黏率达到85%。这是因为槐糖脂具有较强的乳化效果,能够将原油乳化为稳定的O/W型乳状液,降低原油分子间内摩擦力[27]。上述结果与析水率试验结果一致,均能够表明槐糖脂生物表面活性剂具有较好的原油乳化降黏性能。
图3 槐糖脂对试验区块原油的乳化作用Fig.3 Effect of biosurfactants on emulsification of crude oil
接触角测试是表面活性剂润湿性能评价的常用方法之一,接触角越小,表明基底表面的亲水性越强。图4为3种生物表面活性剂处置疏水性基底表面后,接触角随处理时间的变化。可以看出,相比于槐糖脂,鼠李糖脂和脂肽作用后基底表面的接触角均大幅下降,其中鼠李糖脂作用5 d后接触角保持在26°,而脂肽作用5 d后接触角维持在18°。鼠李糖脂和脂肽具有较好的润湿反转性能,而槐糖脂的润湿反转能力弱,这一试验结果与文献报道较为一致[28-29]。从3类生物表面活性剂的分子结构上看,均带有多个亲水基,符合界面润湿剂的特征[30],能够将亲油性表面反转为亲水或弱亲水性。特别是脂肽类,其分子结构上带有多个氨基,界面吸附能力极强,润湿反转性能突出。需要指出的是,槐糖脂类的润湿反转能力较弱,这与其粗提物中副产物多有关。在槐糖脂的发酵过程,需要投加足量的油脂类碳源,而约有70%的油脂转化为槐糖脂[31],剩余油脂类副产物会影响槐糖脂的界面吸附及亲水亲油平衡(HLB值)。因此,槐糖脂显现较强的乳化性能,而润湿性能弱。
图4 生物表面活性剂处置后基底表面 接触角随时间的变化Fig.4 Time course of contact angle of substrates immersed in biosurfactants solutions
根据测试的界面张力与润湿角结果,计算生物表面活性剂对原油剥离岩石壁面的黏附功,计算公式为W=σol(1-cosθ)。式中,σol为油水界面张力,mN·m-1;θ去离子水在基底表面接触角,(°)。
黏附功越小,表明原油越容易从岩石壁面上剥离,表1为不同生物表面活性剂作用7 d后对黏附功的影响。从计算结果可以看出,去离子水处理后黏附功为14.2 mN·m-1,鼠李糖脂处理后黏附功降低至0.069 mN·m-1,槐糖脂处理后黏附功降低至1.03 mN·m-1,脂肽处理后黏附功降低至0.016 mN·m-1。鼠李糖脂和脂肽作用后黏附功下降最为显著,黏附功分别下降99.5%和99.9%,而这主要归因于上述2种生物表面活性剂对试验区块原油具有较好的降低界面张力和润湿反转能力。
表1 生物表面活性剂处理对原油与基底间 界面黏附功的影响Table 1 Adhesion between crude oil and substrates treated by various biosurfactants solutions
Amott润湿性指数法是另一种常用的润湿评价方法,Amott润湿性指数越大,表明基底表面的亲水性越强。表2给出了3种生物表面活性剂作用胶结岩心后对其润湿性的影响,由表2可见,模拟油藏条件下岩心的相对润湿指数为-0.18,表现出弱亲油性。经鼠李糖脂、槐糖脂和脂肽作用后,润湿指数分别上升至0.21、0.08和0.36,说明经生物表面活性剂和水作用后岩心均能够从弱亲油性转变为中性-亲水。其中鼠李糖脂和脂肽表现出较好的润湿反转性能,这一结果与接触角测试结果一致。
表2 Amott润湿指数试验结果
利用一维管式模型评价3种生物表面活性剂的驱油效率,结果见表3。可以看出,岩心在一次水驱、注入了0.3VP生物表面活性剂溶液后直接二次水驱时,驱油效率相比对照组分别提高3.55%、2.43%和4.80%。在这种条件下,鼠李糖脂和脂肽具有更高的驱油效率。注入生物表面活性剂溶液并关闭作用7 d后,鼠李糖脂、槐糖脂和脂肽的提高驱油效率分别为8.46%、14.31%和10.07%。可以看出,延长生物表面活性剂在岩心中的停留时间,能够有效提高水驱驱油效率,这与生物表面活性剂的驱油机制有直接关系。从生物表面活性剂的表界面性能评价结果来看,不同的生物表面活性剂表现出差异性的性能。在降低油水界面张力能力上,鼠李糖脂和脂肽具有比槐糖脂更强的降界面张力能力,界面张力低至10-1mN·m-1。在原油乳化降黏性能方面,槐糖脂比上述两种表面活性剂表现出更强的原油乳化能力。在润湿反转方面,鼠李糖脂和脂肽表现出更强的润湿反转能力。通常认为,降低油水界面张力是一种瞬间行为,在表面活性剂与原油接触后就能够发生作用,提高水驱驱替效率。比较而言,乳化原油和润湿反转则需要更长的作用时间[32],而在用槐糖脂进行驱替试验时则证明了这一点。通过物理模拟试验可以看出,槐糖脂生物表面活性剂主要通过乳化原油提高驱油效率,而鼠李糖脂和脂肽则更多基于降低界面张力和润湿同时作用提高驱油效率。在针对X68X140井这类稠油油井时,驱油剂对原油的乳化作用更能够有效对高渗孔道进行封堵,提高微观波及体积,从而提高水驱效率。而鼠李糖脂和脂肽更多依靠润湿反转和降低界面张力提高水驱效率,由于这种作用不能够扩大波及体系,因此最终的驱替效率要弱于槐糖脂体系。针对这类高含水稠油油藏时,可考虑使用槐糖脂类生物表面活性剂。
表3 生物表面活性剂物理模拟驱油效率
(1)鼠李糖脂和脂肽的分子结构上带有多个亲水基,具有较强的降低界面张力和润湿反转能力,能大幅降低原油从岩石表面剥离的黏附功,黏附功由空白组14.2 mN·m-1分别下降至0.069和0.016 mN·m-1。
(2)槐糖脂带有油脂类副产物,具有更强的乳化性能,400 min后析水率值仍能保持在25%,对试验区块原油降黏率超过85%。
(3)鼠李糖脂和脂肽比较适合原油黏度低的中低渗透率油藏,槐糖脂更适合原油黏度较高的中高渗稠油油藏,3种生物表面活性剂都需要较长的作用时间才能充分发挥其驱油作用。