吕开河, 王晨烨, 雷少飞, 孙金声,, 白英睿, 王金堂, 王 韧, 王建龙
(1.中国石油大学(华东)石油工程学院,山东青岛 266580; 2.中国石油集团工程技术研究院有限公司,北京 102206)
钻井液漏失是钻井施工过程中钻井液大量入侵所钻地层的现象,是最常见的钻井工程事故之一[1-4]。井漏不仅耗费钻井时间,损失大量钻井液,处理不当还可能引起井塌、井喷、卡钻等井下复杂事故,甚至导致井眼报废,造成重大经济损失[5-9]。因此,有效解决井漏问题对于确保井下安全、提高钻井速度、节约钻井成本至关重要[10-12]。建立裂缝性地层钻井液漏失模型,研究钻井液漏失规律,确立堵漏设计准则,是解决钻井液漏失问题的关键[13]。目前,钻井液漏失数学模型主要包括一维线性模型[14]、二维平面模型[15-20]和一维径向模型[21-28]。相对于一维线性模型和二维平面模型,一维径向模型能比较客观的反映钻井液在裂缝性地层中漏失规律,计算过程简单,是最常用的钻井液漏失数学模型。国内外学者在研究裂缝性地层一维径向漏失模型和规律时,大多没有考虑粗糙裂缝壁面和裂缝临界宽度对漏失的影响,没有考虑裂缝特征参数、钻井液流变性等参数对漏失的综合影响,只是分析单因素对漏失的影响,造成理论对防漏堵漏现场施工指导意义不大。针对目前一维径向漏失模型存在的问题,笔者假设钻井液为幂律流体,通过联立连续性方程、动量方程、流体本构方程和裂缝粗糙度表征方程,引入无因次漏失因子,建立径向粗糙裂缝漏失模型,分析裂缝临界宽度、钻井液流变性和粗糙度等因素对漏失规律的影响,建立新的防漏堵漏设计准则。
钻井液漏失模型(图1)采用如下假设条件:①井眼附近存在一条径向粗糙裂缝,裂缝壁面无渗透性;②流体为不可压缩幂律流体;③流动为层流流动。
图1 钻井液漏失几何模型示意图Fig.1 Schematic of lost circulation model
由质量守恒原理可得钻井液漏失连续性微分方程为
(1)
式中,r为径向漏失距离,m;vr为钻井液在裂缝中的径向流速,m/s。
由牛顿第二定律可得钻井液漏失动量方程为
(2)
式中,ρ为钻井液密度,kg/m3;p为压力,MPa;τ为剪切应力,Pa
流体本构方程为
τ=τy+k(-dv/dz)m.
(3)
式中,k为稠度系数,Pa·s;m为流型指数。
由幂律流体的屈服流变性可知,当-zp≤z≤zp(zp为钻井液流核中心到流核边界的距离)时,裂缝中的流体形成了流核,流核中钻井液速度一样,即dv/dz=0。
国内外学者研究裂缝性地层漏失规律时,大都将裂缝简化为平板模型[30]。为了使理论更接近实际,研究者利用裂缝迂曲度、力学开度和水力开度之间的关系[30-37],修正平板模型,以表征粗糙裂缝。裂缝力学开度、水力开度与裂缝迂曲度关系[38]为
(4)
式中,wm为裂缝力学开度,m;wh为裂缝水力开度,m;δ为裂缝迂曲度。
联立上述公式可得钻井液漏失速率为
(5)
由公式(5)可得压差与钻井液漏失速率Q的关系为
(6)
式中,pi为钻井液漏失前缘的压力,MPa;pw为井底压力,MPa;ri为钻井液漏失前缘半径,m;r0为井筒半径,m。
漏失速率Q与时间的关系为
(7)
式中,Vm为漏失量,m3;rf为钻井液漏失前缘到井筒的距离,m。
将式(7)代入式(6)可得钻井液在裂缝中漏失距离随时间的变化关系为
(8)
对式(8)进行无量纲化,可得
(9)
无因次漏失半径rD、无因次漏失量VD、漏失因子α和时间因子β分别为
rD=rf/rw,
(10)
(11)
(12)
(13)
(14)
tD=βt.
(15)
基于上述所建钻井液漏失模型,分析裂缝宽度、钻井液流变参数和裂缝粗糙度等因素对钻井液漏失规律的影响。分析某一特定参数对钻井液漏失规律的影响时,其他参数为定值。模型基本参数:井筒半径为0.03 m;漏失速率为0.1 m3/s;井底压力为30 MPa。
(1)最小裂缝临界宽度。当钻井液中堵漏材料的中值粒径大于或略小于1/3的漏失通道孔径时,即可封堵裂缝。钻井液中小于44 μm的固相颗粒主要是泥和黏土,约占61.5%~76.5%;大于44 μm的固相颗粒主要是砂和泥,约占14.7%~45.7%。所以典型分散性水基钻井液中固相颗粒一般可以封堵住至少约150 μm的裂缝。因此裂缝性地层存在一个取决于钻井液固相颗粒粒径的最小裂缝临界宽度wc1。wc1一般为150~250 μm,当裂缝宽度小于此宽度时,钻井液不会产生漏失。
(2)最大裂缝临界宽度。Dykec等[13]通过研究测井、岩心和室内实验数据,发现钻井液在不同宽度裂缝中漏失机制不同。当裂缝宽度小于最大裂缝临界宽度wc2时,由于钻井液的屈服流变性和钻井液内固体颗粒的封堵效应,漏失会自行停止。wc2一般为500~750 μm。图2为裂缝宽度对裂缝内钻井液前缘压力和漏失量的影响。
图2 裂缝宽度对裂缝内钻井液前缘压力和漏失量的影响Fig.2 Effect of fracture width on pressure profile along fracture and loss volume
由图2可知:随着钻井液在裂缝内侵入深度的增加,钻井液前缘与地层之间的压差不断减小;随着裂缝宽度的减小,裂缝内的钻井液前缘压力下降加快,漏失量减小。因此当裂缝宽度为0.5 mm时,钻井液侵入前缘压力下降迅速,在井筒附近侵入一定深度后,流核宽度等于裂缝宽度,漏失自行停止。
如果仅考虑钻井液流变性的影响时,裂缝的最大临界宽度为
(16)
图3 稠度系数和流型指数对裂缝内钻井液 侵入前缘压力的影响Fig.3 Effect of flow consistency index and flow behavior indexs on pressure profile along fracture for various
钻井液流变参数是影响钻井液漏失的重要因素之一。图3为稠度系数和流型指数对裂缝内钻井液侵入前缘压力的影响。由图3可知:稠度系数越高,钻井液塑性黏度越大,缝内钻井液流动阻力也越大;钻井液流型指数越小,钻井液的剪切稀释效应越明显,侵入前缘压力损失越小。因此稠度系数越大,流型指数越大,裂缝内的钻井液侵入前缘压力损失越大,钻井液漏失量越小。
适当提高钻井液屈服应力是预防钻井液漏失的重要措施之一。图4为钻井液屈服应力对裂缝内钻井液侵入前缘压力和漏失量的影响。由图4(a)可知,初始阶段钻井液屈服应力对侵入前缘压力影响较小,随着钻井液侵入深度的增加,其对侵入前缘压力的影响逐渐增大。由图4(b)和式(16)可知,随着屈服应力增加,流核宽度不断增加,最大裂缝临界宽度也不断增加,漏失量减小。因此当裂缝性地层钻井液漏失时,可以适当增大钻井液的屈服流变性,达到防漏堵漏的效果。
图4 屈服应力对裂缝内钻井液侵入前缘压力和 漏失量的影响Fig.4 Effect of yield stresses on pressure profile along fracture and loss volume
裂缝迂曲度可表征裂缝壁面粗糙度对钻井液漏失规律的影响。图5为粗糙裂缝壁面,图6为裂缝迂曲度对钻井液侵入前缘压力和漏失量的影响。由图6可知,迂曲度越大,裂缝壁面越粗糙,钻井液在裂缝中漏失的阻力越大,侵入前缘压力下降越快,漏失量越小。
图5 粗糙裂缝壁面Fig.5 Rough fracture wall surface
图6 迂曲度对裂缝内钻井液侵入前缘压力的影响Fig.6 Effect of tortuosity on pressure profile along fracture and loss volume
复杂地层钻井过程中,由于单独考虑裂缝宽度、粗糙度和钻井液流变性对钻井液漏失的影响规律,制约着防漏堵漏对策的科学制定,导致一次堵漏成功率较低。因此在钻井液防漏堵漏中,应综合考虑裂缝宽度、粗糙度和钻井液流变性对漏失的影响规律,科学提高堵漏效率。
由式(11)和(13)可知,无因次漏失量为
(17)
由式(12)可知,当钻井液为宾汉流体时,漏失因子可简化为
(18)
无因次漏失量是漏失因子的函数,漏失因子又是裂缝宽度、粗糙度和钻井液流变性的函数。因此漏失因子可综合表征裂缝宽度、粗糙度和钻井液流变性对漏失的影响。图7为钻井液流变性和裂缝迂曲度对漏失因子的影响。由图7可知,漏失因子随裂缝宽度的增加而减小,随钻井液屈服应力的增加而增加,随裂缝粗糙度的增加而增加。
图8为裂缝地层钻井液无因次漏失速率曲线,图9为裂缝地层钻井液漏失典型曲线。由图8和9可知,整个漏失过程可分为3个阶段:漏失早期,曲线的斜率为直线,随着时间增加,漏失速率缓慢减小,漏失量迅速增加;漏失中期,曲线斜率迅速改变,随着时间增加,漏失速率迅速下降,漏失量缓慢增加;漏失晚期,漏失速率迅速下降为零,漏失停止。在一定的漏失时间,漏失因子越小,无因次漏失速率越大,无因次漏失量越大;漏失因子一定时,随着流型指数变化,最终无因次漏失量不变。
由裂缝性地层钻井液漏失规律可知,发生漏失必须具备3个必要条件:①地层中存在导致漏失的漏失通道;②漏失通道孔径应大于钻井液固相颗粒粒径;③井筒压力大于地层压力,且压差能克服钻井液的屈服应力。因此裂缝宽度、井底压力、钻井液的流变性能均是影响钻井液漏失的主要因素。根据裂缝宽度、井底压力以及钻井液的流变性能的影响,可将裂缝性地层漏失分为10种模式,如表1所示。
图7 钻井液流变性和裂缝迂曲度对漏失因子的影响规律Fig.7 Influence of yield stresses, fracture tortuosity and width on invasion factor
图8 裂缝地层钻井液无因次漏失速率Fig.8 Dimensional loss rate of drilling fluid loss into natural fracture
模式1、4中,裂缝宽度小于wc1(150~250 μm)时,钻井液不会产生漏失;模式2、3中,井底压力小于地层压力,钻井液不会产生漏失;模式5中,井底压力大于地层压力,由于钻井液的屈服流变性和钻井液中固体颗粒的封堵作用,漏失一段时间后会自行停止。因此可以适当提高钻井液的稠度系数、流型指数和屈服应力,以达到预防和减少漏失的效果。当裂缝宽度大于wc2(500~750 μm)时,漏失不会自行停止。模式6中,井底压力大于地层压力,裂缝宽度大于wc2,漏失严重,需要加入堵漏材料进行堵漏。模式7、8、9中,由于井底压力大于裂缝的重启压力,会导致闭合的裂缝宽度变大,当裂缝宽度大于wc2时会导致严重漏失。需要降低井底压力或加入堵漏材料进行堵漏,阻止裂缝延伸,减少漏失速率,封堵漏失通道。模式10、11、12中,由于井底压力大于地层破裂压力,导致地层产生诱导裂缝,漏失严重。需要降低井底压力和加入堵漏材料进行堵漏,阻止产生诱导裂缝,减少漏失速率,封堵漏失通道。
图9 裂缝地层钻井液漏失典型曲线Fig.9 Type curves for drilling fluid losses in fractures
根据裂缝临界宽度及以12种漏失模式,可将裂缝性地层漏失分为微尺度、中尺度和大尺度裂缝性漏失。不同的裂缝性地层,防漏堵漏措施不同。本文中依据裂缝性地层漏失的不同类别建立新的防漏堵漏设计准则,如图10所示。裂缝性地层发生漏失时,可通过测量漏失速率、拟合漏失曲线、反演裂缝宽度确定具体的堵漏对策。对于微尺度裂缝性地层漏失,由于裂缝宽度小于wc1,地层漏失量很小,可通过以下3种方法:①继续钻进,忽略渗透性漏失,通过细钻屑累积架桥,提高最小临界裂缝宽度,封堵漏失通道;②停钻,关泵,将钻杆提到可疑漏失地层之上,对井眼进行处理;③预测该地层可能发生漏失,提前在钻井液中加入随钻堵漏材料,提高最小临界裂缝宽度,达到的防漏堵漏的效果。对于中尺度裂缝性地层漏失,裂缝临界宽度为wc1~wc2,地层漏失量一般为中等程度,可在漏失早期适当提高钻井液的稠度系数、流型指数和屈服应力,降低井筒压力,或添加桥塞堵漏材料或高失水堵漏材料,增大最大裂缝临界宽度或减小裂缝宽度,封堵漏失层,进而达到堵漏的效果;对于大尺度裂缝性地层漏失,一般漏失比较严重或钻井液完全失反,在漏失早期需添加可固化堵漏材料、凝胶堵漏材料或吸水/吸油聚合物堵漏材料,如果堵漏失败,则需采用复合堵漏材料(可固化+桥塞与或凝胶等)堵漏,将裂缝宽度减小至最小临界裂缝宽度以下,进而达到封堵漏失层的效果。
表1 裂缝宽度和井底压力对漏失的综合影响
Table 1 Effect of fractures hydraulic aperture and bottomhole pressure on loss caused by natural fractures
表1 裂缝宽度和井底压力对漏失的综合影响
裂缝特征参数天然裂缝pw
图10 裂缝性地层钻井液防漏堵漏对策Fig.10 Available treatments of lost circulation in fractured formations
(1)当井底压差一定时,钻井液屈服应力、稠度系数、流型指数越小,钻井液漏失越严重;裂缝粗糙度越大,裂缝的水力宽度减小,流核影响增大,钻井液漏失量减小。
(2)在钻井液防漏堵漏中,应综合考虑裂缝宽度、粗糙度和钻井液流变性对漏失的影响,增大漏失因子,制定科学的防漏堵漏对策,提高堵漏效率。
(3)裂缝临界宽度是影响钻井液漏失的重要因素。当裂缝宽度小于wc1时,为微尺度裂缝漏失,漏失量很小;当裂缝宽度为wc1~wc2时,为中尺度裂缝漏失,漏失量中等;当裂缝宽度大于wc2时,为大尺度裂缝漏失,漏失严重或造成失返性漏失。对于微尺度裂缝性地层,可在钻井液中添加随钻堵漏材料,提高最小临界裂缝宽度,达到预防漏失的效果;对于中尺度裂缝性地层,漏失早期可改变钻井液流变性能,添加桥塞堵漏材料或高失水堵漏材料,增大最大裂缝临界宽度或减小裂缝宽度,进而达到预防和减少漏失的效果;对于大尺度的裂缝性地层,需要在漏失早期采用可固化堵漏材料、聚合物凝胶类堵漏材料、吸水/吸油聚合物堵漏材料或复合堵漏材料,将裂缝宽度减小至最小临界裂缝宽度以下,实现成功堵漏。