杨新建 戴德 罗国庆
【摘要】 慢性炎症在喉癌发病机制中起重要作用,尤其是CD4、CD8T细胞介导的肿瘤表面抗原提呈及病变细胞清除机制。肿瘤特异性CD4T细胞能产生多种趋化因子以增强CD8T细胞的聚集、增殖和效应功能,亦可部分逆转免疫耐受,而CD4T细胞的Th17细胞和Treg细胞则介导多种肿瘤免疫抑制反应。多项研究表明,淋巴细胞数量相对减少与喉癌的不良预后和生存率相关,而较高的CD8T细胞/Treg细胞比值通常与肿瘤良好的预后相关。
【关键词】 喉癌 免疫抑制 CD4T细胞 CD8T细胞 免疫抑制性T细胞
Potential Association with T Lymphocytes in Laryngeal Squamous Cell Carcinoma/YANG Xinjian, DAI De, LUO Guoqing. //Medical Innovation of China, 2022, 19(05): -188
[Abstract] Chronic inflammation plays an essential role in the pathogenesis of laryngeal cancer, especially the mechanism of tumor surface antigen presentation mediated and the clearance of pathological cells by CD4 and CD8 T cells. Tumor-specific CD4 T cells can produce a variety of chemokines to enhance the aggregation, proliferation and effector function of CD8 T cells, and partially reverse immune tolerance, while Th17 cells and Treg cells of CD4 T cells mediate various tumor immunosuppressive responses. Several studies have shown that a relative decrease in lymphocyte count is associated with poor prognosis and survival in laryngeal cancer, while a higher CD8 T-cell/Treg ratio is generally associated with favorable tumor prognosis.
[Key words] Laryngeal cancer Immunosuppression CD4 T cells CD8 T cells Regulatory T cells
First-author’s address: Guangdong Medical University, Zhanjiang 524000, China
doi:10.3969/j.issn.1674-4985.2022.05.046
喉鳞状细胞癌(laryngeal squamous cell carcinoma,LSCC)是头颈部最常见的恶性肿瘤之一,其5年生存率在局限性侵犯范围患者约为75%,局部侵犯患者约为44%,远处转移患者约为35%[1]。国内研究报道LSCC患者1、3、5年的生存率分别为96.29%、74.24%和42.14%[2]。在过去40年中,虽然LSCC总发病率在下降,但其5年生存率从66%下降到63%,这是少数几个生存率下降的腫瘤疾病之一[3]。
喉癌的发病机制涉及多个危险因素。其中最重要的是吸烟与喝酒。吸烟与喉癌的发展呈线性关系,吸烟者患喉癌的风险是不吸烟者的10~15倍,最重度吸烟者患喉癌的风险高达30倍[4]。吸烟与喝酒引起的慢性炎症在LSCC的发展中起着至关重要的作用。尤其是炎症细胞中CD4、CD8T细胞介导的肿瘤表面抗原提呈与病变细胞清除作用,以及免疫抑制性T细胞(Treg)在肿瘤中由多种机制诱导的免疫抑制,以致无法识别及清除病变细胞。
肿瘤生长主要由CD4和CD8T细胞控制[5]。在肿瘤发展过程中,肿瘤相关免疫主要有三个阶段,即消除、平衡和逃逸[6-8]。在细胞癌变转化后,新生的肿瘤病变触发免疫反应,机体免疫能特异性地清除这些病变,从而保护宿主免受癌症的侵袭,这是指消除阶段。然而,当免疫反应在平衡期时,则无法完全清除肿瘤细胞,但仍然可以阻止肿瘤持续生长,不完全清除肿瘤细胞的过程中促进了肿瘤细胞变异的产生,即免疫原性降低。Koebel等[9]在小鼠中证实了这一阶段的存在,以及免疫系统维持隐匿性癌症平衡状态的能力,在这个免疫平衡状态过程中,低免疫原性的肿瘤细胞最终发展为临床表现的肿瘤。
1 CD8T细胞
CD8T细胞可分化为细胞毒性T细胞,对肿瘤细胞表现出细胞毒性。关于CD8T细胞向细胞毒性T细胞的分化具体机制如下,原代CD8T细胞通过T细胞受体(TCR)与抗原呈递细胞(APC)上的肽-主要组织相容性复合体(MHC)相互作用,由共刺激信号和细胞外细胞因子的刺激下逐步活化。活化的CD8T细胞在依赖IL-2的机制下,最终分化为具有高度细胞毒性效应CD8T细胞[10-11]。
细胞毒性T细胞(CTL)通过其TCR识别肿瘤细胞上的抗原-MHC复合物,形成免疫突触。CTL被激活后,CTL内的颗粒进入免疫突触,将其内容物释放进去。CTL内的颗粒含有FAS配体、穿孔素和颗粒酶。CTL介导的细胞毒性对靶细胞有两种不同的途径。其中一条途径是FAS配体与靶细胞上的FAS相互作用,通过激活caspase-8和caspase-3导致靶细胞凋亡。在另一种途径中,穿孔素在靶细胞膜上打开通道,颗粒酶B通过通道进入细胞质,通过激活caspase-3导致靶细胞凋亡[12]。
2 CD4T细胞
CD8T细胞因为具有强大的细胞毒性,通常被视为对控制肿瘤生长至关重要的免疫细胞类型。相比之下,肿瘤特异性CD4T细胞则显示出复杂的生物学特性,它们的作用远远超出了向CD8T细胞提供辅助信号的任务[13]。原代CD4T细胞能够分化成多个效应子亚群,主要的辅助细胞亚型是Th1和Th2。Th1的分泌依赖于局部IL-12的分泌,而Th2细胞的产生依赖于IL-4和IL-12的缺乏。据报道,Th2细胞具有抗肿瘤作用[14]。移植的Th2细胞能够根除小鼠皮下MHC Ⅱ类阴性骨髓瘤[15]。Th2细胞在体内的持久性与长期免疫相关。然而,Th1细胞也被认为是癌症免疫重要的辅助细胞类型,通过分泌激活肿瘤细胞表面死亡受体的细胞因子和诱导表位的扩散来参与肿瘤细胞的杀伤[16]。
3 CD4与CD8T细胞的相互作用
IFN-γ是一种由活化的CD4和CD8T细胞释放的细胞因子。Kammertoens等[17]揭示了IFN-γ对肿瘤微环境(TME)的影响,并确定了肿瘤间质中的肿瘤抑制效应。IFN-γ可诱导肿瘤血管系统退化,并且IFN-γ来源的T细胞也可以促进肿瘤缓解。在恶性间皮瘤模型中,当CD4和CD8T淋巴细胞共同转移时,显示出显著增强的T细胞反应和肿瘤免疫反应,然而,仅转移CD8T细胞则不足以诱导肿瘤的缓解[18]。Church等[19]证明了肿瘤特异性CD4T细胞有助于维持肿瘤诱导CD8T细胞免疫功能的作用。总的来说,肿瘤特异性CD4T细胞通过产生趋化因子和IL-2,增强CD8T细胞的聚集、增殖和效应功能[20]。
CD4和CD8T细胞反应通过降低CD8T细胞表面的肿瘤免疫识别阈值而增强对肿瘤抗原的免疫应答,这些抗原在没有CD4T细胞的情况下是不会触发肿瘤缓解的。Surman等[21]研究表明,转移Th1极化的CD4T细胞可诱导肿瘤特异性CD8T细胞反应和肿瘤缓解。在小鼠模型中,通过转移TCR修饰的CD4T细胞,可以克服CD8T细胞对自身抗原MDM-2的耐受[22]。在具有弱免疫原性肿瘤的研究中,可以观察到已经转化为耐受性CD8+T细胞,在CD4T细胞的辅助下,可部分逆转免疫耐受[23]。
与Th1和Th2不同的另一个辅助细胞是Th17谱系,是由TGF-β和IL-6诱导激活[24]。Muranski等[25]研究报告表明,通过依赖IFN-γ的肿瘤特异性Th17可清除黑色素瘤。与Th17细胞相比,Th1极化细胞能够分泌更高水平的IFN-γ,但研究人员发现Th17细胞在介导晚期黑色素瘤的清除方面更具优势。事实上,Th17细胞在体外刺激时,除了分泌IL-17和TNF-α外,也会分泌IFN-γ[26]。Voo等[27]证明IL-17的表达并不局限于Th17细胞,抑制性Treg可同时表达转录因子RORγt(Th17)和Foxp3。此外,有证据表明,在肿瘤微环境中,Th17细胞有可能转化为免疫抑制调节性T细胞[28]。
4 Treg细胞
根据免疫抑制调节性T细胞(Tregs)的生物学特性,可分为两组:自然调节性T细胞(自然发生的Tregs,nTregs)和诱导性T细胞(诱导性Tregs,iTregs)。两种类型的Treg均能普遍表达Foxp3[29]。nTreg在胸腺中自然發育,其抑制作用是通过细胞间接触实现的。其主要功能是维持正常的免疫耐受和控制炎症反应[30],iTregs来源于肿瘤微环境信号诱导的外周血中未成熟的T细胞[31]。
Tregs主要通过以下5种机制抑制免疫:(1)Tregs分泌IL-10、TGF-β、IL-35等抑制性细胞因子,通过IL-10等依赖途径抑制免疫功能[32]。(2)Tregs通过分泌颗粒酶和穿孔素杀死效应细胞,穿孔素是介导CTL、NK等细胞毒性的主要分子[33]。(3)Treg通过以下三种方式干扰细胞代谢影响效应细胞功能:①消耗TME中的IL-2,效应细胞的增殖需要维持IL-2水平。Tregs与效应T细胞竞争并消耗大量IL-2,从而抑制效应T细胞的生长[34]。②Treg通过产生胞外酶CD39和CD73促进TME中腺苷的产生,腺苷是一种已知的抑制分子,并通过不同的腺苷受体(A、A、A和A)传递抑制信号[35]。③Treg通过缝隙连接将大量cAMP转移到效应T细胞,以干扰其代谢[33]。(4)调节因子的分化和增殖,从而抑制NKT细胞的细胞毒性功能[36]。(5)MDSC和Treg产生的因子形成正反馈回路,以促进每个抑制种群的扩增并加强抑制环境[37]。
5 小結
正如从文献中看到的,CD4T细胞介导的抗肿瘤免疫或促进肿瘤生长的免疫调节,往往取决于肿瘤微环境和患者自身的免疫状态。CD4T细胞能够与多种类型免疫细胞和其他非造血细胞进行相互作用而调节肿瘤免疫。然而,恶性疾病通过大量的适应性,克服了宿主的多种肿瘤抑制机制。癌症是一种不断进化的疾病,逃避免疫系统监测是肿瘤发展的重要环节。在癌症晚期,当肿瘤被确诊时,CD4和CD8T细胞的反应通常是无效的[38]。
CD8T细胞对肿瘤的浸润大多被认为有利于患者的生存,CD8T细胞/Treg的比值被认为是不同类型癌症的重要预后因素。较高的CD8+T细胞/Treg比值通常与肿瘤良好的预后相关[39]。宿主对肿瘤的免疫反应是淋巴细胞依赖性的。一些临床研究已经确定,淋巴细胞相对减少与LSCC的不良预后和生存率相关。中性粒细胞-淋巴细胞比例(NLR)升高的患者通常有相对的淋巴细胞减少,这可能反映了CD4T辅助细胞和细胞毒性CD8+细胞介导的肿瘤的免疫功能的减弱[40]。虽然已有众多的回顾性研究分析表明LSCC患者术前NLR、MLR及PLR与患者的良好预后明显相关[41-42],但还需要更多的前瞻性随机研究来验证淋巴细胞与LSCC的关系,甚至可以细分为CD4T辅助细胞、细胞毒性CD8T细胞和免疫抑制性T细胞在LSCC患者肿瘤的不同发展时期的数量变化,也有必要进行相关的基础实验来验证其潜在的病理生理机制。
参考文献
[1] ESKIIZMIR G,UZ U,ONUR E,et al.The evaluation of pretreatment neutrophil-lymphocyte ratio and derived neutrophil-lymphocyte ratio in patients with laryngeal neoplasms[J].Braz J Otorhinolaryngol,2019,85(5):578-587.
[2] CHEN H,SONG S,ZHANG L,et al.Preoperative platelet-lymphocyte ratio predicts recurrence of laryngeal squamous cell carcinoma[J].Future Oncol,2020,16(6):209-217.
[3] SIEGEL R L,MILLER K D,JEMAL A.Cancer statistics, 2016[J].CA: A Cancer Journal for Clinicians,2016,66(1):7-30.
[4] KUPER H,BOFFETTA P,ADAMI H O.Tobacco use and cancer causation: association by tumour type[J].J Intern Med,2002,252(3):206-224.
[5] SHANKARAN V,IKEDA H,BRUCE A T,et al.Pillars Article: IFNγ and Lymphocytes Prevent Primary Tumour Development and Shape Tumour Immunogenicity[J].Nature,2001,410:1107-1111.
[6] DUNN G P,OLD L J,SCHREIBER R D.The three Es of cancer immunoediting[J].Annu Rev Immunol,2004,22:329-360.
[7] MITTAL D,GUBIN M M,SCHREIBER R D,et al.New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape[J].Curr Opin Immunol,2014,27:16-25.
[8] SCHREIBER R D,OLD L J,SMYTH M J.Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.
[9] KOEBEL C M,VERMI W,SWANN J B,et al.Adaptive immunity maintains occult cancer in an equilibrium state[J].Nature,2007,450(7171):903-907.
[10] KALIA V,SARKAR S,SUBRAMANIAM S,et al.Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo[J].Immunity,2010,32(1):91-103.
[11] PIPKIN M E,SACKS J A,CRUZ-GUILLOTY F,et al.
Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells[J].Immunity,2010,32(1):79-90.
[12] GOLSTEIN P,GRIFFITHS G M.An early history of T cell-mediated cytotoxicity[J].Nat Rev Immunol,2018,18(8):527-535.
[13] HANSON H L,KANG S S,NORIAN L A,et al.CD4-directed peptide vaccination augments an antitumor response, but efficacy is limited by the number of CD8+ T cell precursors[J].J Immunol,2004,172(7):4215-4224.
[14] MATTES J,HULETT M,XIE W,et al.Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process[J].J Exp Med,2003,197(3):387-393.
[15] LORVIK K B,HAMMARSTRÖM C,FAUSKANGER M,et al.
Adoptive Transfer of Tumor-Specific Th2 Cells Eradicates Tumors by Triggering an In Situ Inflammatory Immune Response[J].Cancer Res,2016,76(23):6864-6876.
[16] KNUTSON K L,DISIS M L.Tumor antigen-specific T helper cells in cancer immunity and immunotherapy[J].Cancer Immunol Immunother,2005,54(8):721-728.
[17] KAMMERTOENS T,FRIESE C,ARINA A,et al.Tumour ischaemia by interferon-γ resembles physiological blood vessel regression[J].Nature,2017,545(7652):98-102.
[18] MARZO A L,LAKE R A,ROBINSON B W.T-cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors[J].Cancer Res,1999,59(5):1071-1079.
[19] CHURCH S E,JENSEN S M,ANTONY P A,et al.Tumor-specific CD4+ T cells maintain effector and memory tumor-specific CD8+ T cells[J].Eur J Immunol,2014,44(1):69-79.
[20] BOS R,SHERMAN L A.CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes[J].Cancer Res,2010,70(21):8368-8377.
[21] SURMAN D R,DUDLEY M E,OVERWIJK W W,et al.
Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen[J].J Immunol,2000,164(2):562-565.
[22] GHORASHIAN S,VELIÇA P,CHUA I,et al.CD8 T cell tolerance to a tumor-associated self-antigen is reversed by CD4 T cells engineered to express the same T cell receptor[J].J Immunol,2015,194(3):1080-1089.
[23] GERNER M Y,CASEY K A,MESCHER M F.Defective MHC class Ⅱ presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses[J].J Immunol,2008,181(1):155-164.
[24] MANGAN P R,HARRINGTON L E,O’QUINN D B,et al.
Transforming growth factor-beta induces development of the Th17 lineage[J].Nature,2006,441(7090):231-234.
[25] MURANSKI P,BONI A,ANTONY P A,et al.Tumor-specific Th17-polarized cells eradicate large established melanoma[J].Blood,2008,112(2):362-373.
[26] PARK H,LI Z,YANG X O,et al.A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol,2005,6(11):1133-1141.
[27] VOO K S,WANG Y H,SANTORI F R,et al.Identification of IL-17-producing FOXP3+ regulatory T cells in humans[J].Proc Natl Acad Sci U S A,2009,106(12):4793-4798.
[28] YE J,SU X,HSUEH E C,et al.Human tumor-infiltrating Th17 cells have the capacity to differentiate into IFN-γ+ and FOXP3+ T cells with potent suppressive function[J].Eur J Immunol,2011;41(4):936-951.
[29] WING J B,TANAKA A,SAKAGUCHI S.Human FOXP3+ Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer[J].Immunity,2019,50(2):302-316.
[30] VASANTHAKUMAR A,LIAO Y,TEH P,et al.The TNF Receptor Superfamily-NF-κB Axis Is Critical to Maintain Effector Regulatory T Cells in Lymphoid and Non-lymphoid Tissues[J].Cell Rep,2017,20(12):2906-2920.
[31] WANG L,SIMONS D L,LU X,et al.Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer[J].Nat Immunol,2019,20(9):1220-1230.
[32] TOOMER K H,MALEK T R.Cytokine Signaling in the Development and Homeostasis of Regulatory T cells[J].Cold Spring Harb Perspect Biol,2018,10(3):a028597.
[33] LI C,JIANG P,WEI S,et al.Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects[J].Mol Cancer,2020,19(1):116.
[34] SPOLSKI R,LI P,LEONARD W J.Biology and regulation of IL-2: from molecular mechanisms to human therapy[J].Nat Rev Immunol,2018,18(10):648-659.
[35] OHTA A,KINI R,OHTA A,et al.The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway[J].Front Immunol,2012,3:190.
[36] IHARA F,SAKURAI D,TAKAMI M,et al.Regulatory T cells induce CD4-NKT cell anergy and suppress NKT cell cytotoxic function[J].Cancer Immunol Immunother,2019,68(12):1935-1947.
[37] GHIRINGHELLI F,PUIG P E,ROUX S,et al.Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation[J].J Exp Med,2005,202(7):919-929.
[38] OSTROUMOV D,FEKETE-DRIMUSZ N,SABOROWSKI M,et al.CD4 and CD8 T lymphocyte interplay in controlling tumor growth[J].Cell Mol Life Sci,2018,75(4):689-713.
[39] GAO Q,QIU S J,FAN J,et al.Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection[J].J Clin Oncol,2007,25(18):2586-2593.
[40] OHTANI H.Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer[J].Cancer Immun,2007,7:4.
[41] FU Y,LIU W,OUYANG D,et al.Preoperative Neutrophil-to-lymphocyte Ratio Predicts Long-term Survival in Patients Undergoing Total Laryngectomy With Advanced Laryngeal Squamous Cell Carcinoma: A Single-center Retrospective Study[J/OL].Medicine (Baltimore),2016,95(6):e2689.
[42] ZHONG B,GU D Y,DU J T,et al.May the change of platelet to lymphocyte ratio be a prognostic factor for T3-T4 laryngeal squamous cell carcinoma: a retrospective study[J/OL].PLoS One,2018,13(12):e0210033.
(收稿日期:2022-01-07) (本文編辑:张爽)