陈 雪,许丹丹,钱雅慧,洪秀萍,梁汉东*
淮北矿区煤矸石多环芳烃污染特征及毒性评价
陈 雪1,2,许丹丹1,钱雅慧1,洪秀萍3,梁汉东1,2*
(1.中国矿业大学(北京),煤炭资源与安全开采国家重点实验室,北京 100083;2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;3.淮北师范大学生命科学学院,安徽淮北 235000)
煤矸石;烷基多环芳烃;风化;特征比值;毒性当量(TEQ)
多环芳烃(PAHs)是一类环境持久性有机污染物[1],具有“三致”毒性,美国EPA将16种母体多环芳烃(16PAHs)列为优先控制的污染物[2-3],而母体苯环上带有基团的PAHs衍生物,如烷基多环芳烃(a-PAHs)近来被发现有更高的毒性和生物可及性[4].长期以来,煤炭燃烧被认为是PAHs重要来源[5],然而新近研究发现,未燃烧原煤中也普遍含有PAHs[6].而煤矸石作为一种与煤伴生的富含碳有机质的灰黑色硬质岩石[7],生产中常以原煤15%的比例同时产出[8],很可能天然含有PAHs.目前已有研究者对煤矸石及其附近环境介质中的PAHs进行研究:不仅煤矸石堆周围土地及水体中普遍含有PAHs[9],而且煤矸石中也同样含有PAHs,其释放的PAHs会增加当地癌症风险[10].煤矸石对于其堆放区域的土壤,水体的污染已经引起重视,但是煤矸石本身的有机污染特征尚不清晰.此外,产出的煤矸石露天堆放或就地回填的粗放处理方式会加剧煤矸石的风化氧化[11],其环境影响很可能更甚于原煤[12],煤矿关闭后原煤被开采殆尽,而遗留下的煤矸石堆及回填煤矸石会持续向环境释放PAHs,研究发现废弃50年的德国鲁尔煤矿土壤中仍含有大量PAHs[13](包含a-PAHs),其主要来源于煤,煤灰及矸石碎屑.我国迄今仍为世界上最大的煤炭生产国,消费国[8],刘桥二矿所开采的是我国最重要的含煤地层——石炭-二叠纪煤层,分布于泛华北区域的重要战略位置,煤炭产量占全国55%[14],是阐明煤矸石环境问题的良好切入点,目前我国对煤矸石中PAHs尤其是a-PAHs的研究较少[15],本文采集矿区典型新鲜煤矸石与风化煤矸石样品,利用GC-MS/MS检测其中PAHs与a-PAHs的含量,分析污染特征,评估潜在生态风险,旨在探索煤矸石中赋存PAHs的潜在内在联系.
图1 刘桥二矿位置
刘桥二矿(116°39′E,33°56′N)位于安徽省淮北市濉溪县刘桥镇境内,东距滩溪县城约10km,西接河南省永夏矿区,地理位置如图1所示.井田地层属华北型,煤系地层为石炭二叠系,发育11个组,本矿主采煤层为二迭系山西组6煤层(煤层厚1.50~5.93m,平均2.95m)和下石盒子组4煤层(煤层厚0~3.54m,平均1.68m),矿井设计年产量为60万t.
在研究区共采集煤矸石样品13个,包括7个新鲜煤矸石(X-1~X-7)和6个风化煤矸石(F-1~F-6).其中新鲜煤矸石采自刚运送出的煤矸石,沿煤矸石堆底部等距离随机选取7个点,每个点位采集1个样品,共计7件样品.风化煤矸石采自已堆积多年的煤矸石堆,除去覆土后,采用顺坡法采样,分别在山底,山腰和山顶选取2个处于同一等高线水平上的采样点位,每个点位采集2件样品,共计6件,单件样品质量范围在500~1000g.为了防止有机物污染,采集的样品用铝箔纸包裹带回实验室待测.
1.3.2 仪器分析 仪器测试及定性定量方法参考Carles等[17]检测沉积物中29种PAHs的方法.测试仪器为气相色谱-三重四级杆质(Waters,Xevo TQ-GC,USA),色谱柱采用DB-5MS(Agilent,30m× 0.25mm×0.25μm, USA),进样体积1μL,载气为氦气,不分流进样,柱温箱升温程序为:初始温度为70℃,保留1min,以15℃/min升到180℃,保留2min,10℃/min升到220℃,保留0.5min, 5℃/min升到250℃,保留2min,最后以8℃/min升到300℃,保留5min,共计33min.质谱方法:EI离子源,电离电压为70eV,离子源温度250℃,接口温度280℃,50~550amu,全扫模式.溶剂延迟4.0min.
1.3.3 定性与定量 用正己烷作溶剂稀释原标准品,配制7个浓度梯度(5~800ng/mL)的26种PAHs的标准溶液(16PAHs,5种a-PAHs,4种定量内标和1种回收率内标).采用全扫模式,在1.3.2的测试条件下上机检测,从低浓度到高浓度依次进样,通过质量色谱图结合NIST库,对各组分进行定性分析,确定各组分的保留时间,并计算各组分的响应因子,最后用相对响应因子法在Targetlynx软件建立数据定量方法,对煤矸石样品中的目标化合物进行定量,已有标准物质按照保留时间和质量色谱图进行定性定量,同分异构体通过质量色谱图定性,相应标准物质的响应因子定量.
1.3.4 方法验证 用此前处理方法及定性定量方法测定样品前,在实验室进行了方法验证,配置含27种PAHs的系列浓度梯度的标准溶液,对除定量内标及回收率内标外的22种PAHs(16PAHs及1-甲基萘,1,2-二甲基萘,2-甲基蒽,3,6-二甲基菲,1-甲基芘,7-甲基苯并[a]芘)进行定量,然后进行标准线性方程的绘制,线性范围在5~800ng/g,线性相关系数2均在0.99以下(0.9910~0.9987),对上机样品浓度为200ng/mL的基质加标样品平行测定7次,基质加标回收率为70%~125%(73.11%~124.06%),相对标准偏差在14.3%以下,各物质方法检出限在0~0.17mg/ kg,满足方法要求.
如表1所示,16PAHs的样品检出率为81%,NAP, FLU,PHE,CHR在所有样品中均有检出,ACY, ACE,ANT均未检出,其余PAHs部分样品中检出.13件煤矸石样品的∑16PAHs平均浓度为505.23ng/g (205.13~937.05ng/g,=13),其中PHE(167.77ng/g)的含量最高,其次为CHR(77.69ng/g)和NAP(76.92ng/ g),分别占16PAHs总和的33%,15%和15%.新鲜样品中∑16PAHs平均浓度为376ng/g (205.13~562.20ng/ g,=7),含量较高的为PHE,CHR,NAP,BaP.风化煤矸石样品中∑16PAHs的平均浓度为656.56ng/g (378.22~937.05ng/g,=6),含量较高的为PHE,NAP, CHR.风化样品中∑16PAHs及部分单体PAHs(PHE, CHR,NAP)的含量约为新鲜样品中的两倍,但是新鲜样品中BaP的含量远高于风化样品.结果说明:煤矸石中天然含有一定数量的16PAHs,且所采的煤矸石具有相似的16PAHs含量特征及种类特征,主要富含PHE,CHR,NAP这几种物质;风化煤矸石中16PAHs浓度高于新鲜样品,仅BaP的浓度在风化样品中较低.风化样品中较高的PAHs浓度可能是因为煤矸石经历风化过程后,大分子物质发生解离而生成更多小分子PAHs,结构变得更加松散使其中16PAHs更易暴露、提取.
表1 刘桥二矿煤矸石样品16PAHs含量
由图2可见,整体样品中以2~3环PAHs为主(占比50%以上),其次为5~6环PAHs,4环PAHs含量较低.而刘桥二矿主产煤种为高变质贫煤和无烟煤[18],煤矸石中PAHs的环数分布特征符合高变质无烟煤以2~3环为主的特征[19].新鲜样品中5~6环含量占比较高,而风化样品中2~4环含量占比较高,这可能是由于风化过程使得大分子物质发生化学作用,解离为更多小分子物质,从而提高了低分子量PAHs的浓度水平.
我国煤按变质程度主要分为3类:无烟煤,烟煤,褐煤(变质程度依次降低);其中烟煤又按粘结性与挥发分高低分为贫煤,贫瘦煤,瘦煤,焦煤,肥煤等(粘结性与挥发分依次升高)[20].由表2可知,不同变质程度的煤中16PAHs的含量差距较大,总体满足变质程度越高16PAHs的含量越低,烟煤中挥发分与粘结性越差16PAHs含量越低,总体上低环PAHs含量占比较高,中变质烟煤,焦煤的高环PAHs较高.本文所测得刘桥二矿16PAHs含量介于无烟煤与贫煤之间,符合其出产高变质贫煤的特点,而高环化合物含量偏高,可能与煤矸石来源有关,张小凤等[21]采集的是煤层夹矸,里兰煤矿和忻州窑煤矿是在煤矸石堆中采集的样品,高环PAHs含量较高,刘桥二矿所采煤矸石堆含有掘进矸石,夹矸,洗煤矸石,煤矸石种类丰富,高环PAHs在个别样品中含量低,在部分样品中高,因此高环PAHs平均含量高于同等变质程度煤层夹矸.
图2 16PAHs环数分布
表2 不同来源煤矸石中16PAHs含量及环数分布对比(ng/g)
注:2~3环(NAP,ACY,ACE,FLU,PHE,ANT),4环(FLA,PYR,CHR),5~6环(BbF,BkF,BaP,InP,DBA,BgP,BaA).
13件煤矸石样品中8种PAHs对应的a-PAHs定性定量结果如表3所示,a-PAHs平均浓度为587.88ng/g(210.69~983.71ng/g,=13),总检出率为87%,仅C4,C5-NAP未检出,在样品中含量最高为:烷基萘(C1-3NAP,129.49ng/g,37.29~259.91ng/g),烷基菲(C1-4PHE,237.79ng/g,85.48~558.04ng/g),C1-BaP(143.68ng/ g,0~598.33ng/g).新鲜样品中∑a-PAHs平均浓度为528.10ng/g(210.69~795.63ng/g,=7),含量最高的为C2-PHE(204.85ng/g,48.40~430.60ng/g), C1-BaP (110.87ng/ g,0~236.11ng/g).风化样品中∑a-PAHs平均浓度为657.62ng/g(417.23-983.71ng/g,=6),含量最高的为C1-BaP(200.43ng/g,35.45~598.33ng/g),C1-NAP(125.65ng/g,62.06~164.09ng/g).风化样品较新鲜样品∑a- PAHs浓度水平更高,主要是烷基萘,C1-BaP含量的增多,而新鲜样品中烷基菲(尤其是C2-PHE)含量较高,其余a-PAHs含量无显著差异.因此煤矸石中存在大量a-PAHs,含量高于16PAHs,应给予同等的重视.
表3 刘桥二矿煤矸石样品a-PAHs定性定量结果
注:C(1-5)表示带有(1-5)个甲基取代,如C1-NAP表示一甲基取代的萘,以此类推,n.d.表示未检出.
同一种a-PAHs在样品中含量差异较大,同样的情况在16PAHs的检测中也存在,而这主要是因为煤矸石堆积区域的煤矸石种类不同,通常煤矸石分为掘进矸石,采掘过程中从顶板,底板及夹层里采出的矸石以及洗煤过程中挑出的洗矸石,不同种类矸石在含量上具有差异是正常的,而风化矸石采用顺坡采样法,因此样品风化程度差异较大,其中PAHs含量不同.尽管在含量上具有差异,但优势PAHs是保持一致的,可以说明刘桥二矿煤矸石的污染特性.
目前常用PAHs特征比值来判定污染来源[24],常用特征比值有BaA/(BaA+CHR),FLA/(FLA+ PYR),ANT/(ANT+PHE)和InP/(InP+BghiP)等,主要区分环境样品中的石油源,生物质燃烧源及机动车排放源[25].而a-PAHs通常被认为是来源于未经燃烧的石油(成岩源)[26],目前有学者用0/(0+1)PHE/ ANT,0/(0+1)FLU/PYR(小于0.5)判定PAHs的石油来源[27].
本文中萘及烷基萘,菲及烷基菲在所有样品中均有检出且含量较高,遵循烷基取代物大于母体的规律,因此以0/(0+1-4)PHE,0/(0+1-5)NAP为特征比值对数据进行分析,发现0/ (0+1-4) PHE在0~0.23,0/(0+1-5)NAP在0.25~0.54,具有良好的聚集性,如图3(b).同时参考此前文献中关于煤炭[28],石油以及石油污染的沉积物[29]中多环芳烃及其取代物的数据,进行对比绘图,结果具有良好的区分度.由图3可得:左侧上方椭圆部分是本次实验测定的矸石样品,可见矸石源样品在这两个比值下具有良好的聚集性,分布范围为[0~0.25,0.2~0.55],母体萘在萘系物(萘与烷基萘)要高于菲在菲系物中的占比;左下椭圆区域是原煤(空心方形)及原油样品(星型),其分布范围[0~0.3,0~0.2],萘在萘系物,菲在菲系物中的占比均较小;而原油污染过的沉积物样品,分布范围更加广泛,取值范围为[0.3~0.8,0.2~0.75],萘,菲的比值均显著上升,这可能与环境风化,水流的脱烷基效应有关[30].综上可得,0/(0+1-4)PHE,0/ (0+1-5)NAP的特征比值能够较好的区分煤矸石来源的PAHs,a-PAHs应用于特征比值确认来源具有良好的效果.
表4 物质毒性等效因子(TEF),平均BaP等效毒性浓度(BaPeq)
矿区煤矸石通常是在停止开采后才会集中进行处理,而在煤矿的生命周期内,大量煤矸石堆积风化已经是一个普遍现象,张黎明等[22]对煤矸石堆附近土壤中16PAHs进行检测,发现其越靠近矸石堆,土壤深度越浅含量越高;乔元栋等[23]对充填重构的煤矸石及充填位置的土壤进行16PAHs的检测发现随时间推移,煤矸石中PAHs几乎全部迁移到土壤中.本文采用BaP毒性等效浓度对煤矸石中PAHs进行毒性评价[31-34],16PAHs毒性当量因子[35]如表4所示,a-PAHs的毒性当量因子以其对应的母体PAH计算.评价结果显示:BaP及其烷基取代物贡献了大量的毒性风险,其中C1-BaP贡献了70%的毒性风险.风化后C1-BaP的含量显著上升,导致风化后煤矸石毒性风险增大,且风化后的煤矸石粉末更易迁移,因此煤矸石的风化会造成更加严重的生态风险,而实地采样时发现,刘桥二矿煤矸石堆比邻农田,对农作物及种植农作物的人群可能也产生相应的健康风险.根据加拿大魁北克政府在网站上公布的大气质量标准,二甲基取代BaA的BaP等效毒性为其母体的的100倍[36],同时多项研究显示a-PAHs具有更高的毒性[37-40].而本文以母体多环芳烃的BaP的等效浓度计算其烷基取代物浓度,是低估了a-PAHs的毒性,所计算的等效毒性浓度数值是一个保守值,实际毒性风险可能远高于计算.因此,矿区煤矸石堆的a-PAHs污染应引起重视.
3.2 所有样品∑a-PAHs均值为587.88ng/g,总体a-PAHs含量高于16PAHs;风化样品a-PAHs含量增加,烷基萘与C1-BaP的含量上升最为显著,而C2-PHE在风化后含量降低,相对应的BaP,PHE含量升高.
3.3 运用特征比值0/(0+1-5)NAP,0/(0+1-4)PHE进行污染特征分析,结果表明0/(0+1-5)NAP(0.2~0.55),0/(0+1-4)PHE(0~0.25),可以较好地区分煤炭,石油及石油污染过的沉积物来源的PAHs.
3.4 煤矸石的毒性风险评价结果显示,13件样品平均BaP等效毒性浓度为194.596ng/g,a-PAHs(尤其是C1-BaP)贡献了大部分毒性风险,风化样品毒性风险增大.而多项研究证实a-PAHs的毒性远大于其母体,故实际毒性风险可能远高于估计值.
[1] Ball A, Truskewycz A. Polyaromatic hydrocarbon exposure: an ecological impact ambiguity [J]. Environmental Science & Pollution Research, 2013,20(7):4311-4326.
[2] Shen M, Xing J, Ji Q, et al. Declining Pulmonary Function in Populations with Long-term Exposure to Polycyclic Aromatic Hydrocarbons-Enriched PM2.5[J]. Environ. Science Technology, 2018,52(11):6610-6616.
[3] Xiao R, Bai J, Wang J, et al. Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates [J]. Chemosphere, 2014,110:8-16.
[4] 刘志华,刘大锰,姚艳斌.燃煤产物中多环芳烃赋存规律及环境意义 [J]. 煤炭科学技术, 2009,5:115-118.
Liu Z H, Liu D M, Yao Y B. Distributed law and environment significance of polycyclic aromatic hydrocarbons in coal burning productao [J]. Coal Science and Technology, 2009,5:115-118.
[5] 马 伦,陆大荣,梁汉东,等.神华长焰煤大分子结构特征的研究[J]. 燃料化学学报, 2013,41(5):513-522.
Ma L, Lu D R, Liang H D, et al. Preliminary study on macromolecular structure characteristics of Shenhua long flame coal [J]. Journal of Fuel Chemistry and Technology, 2013,41(5):513-522.
[6] 吴国强,汪 涛,王家伟,等.煤和煤矸石及其燃烧产物中稀土元素赋存形态研究[J]. 燃料化学学报, 2020,48(12):1498-1505.
Wu G Q, Wang T, Wang J W, et al. Occurrence forms of rare earth elements in coal and coal gangue and their combustion products [J]. Journal of Fuel Chemistry and Technology, 2020,48(12):1498-1505.
[7] Liu, H B, Liu Z L. Recycling utilization patterns of coal mining waste in China [J]. Resour Conserv Recycl, 2010,54(12):1331-1340.
[8] BP. BP statistical review of world energy [Z]. 2019.
[9] Sun Y, Fan J, Qin P, et al. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China [J]. Environmental Geochemistry and Health, 2009,31(1):81-89.
[10] Yang Y R, Gao H F, Yue X F, et al. Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis [J]. Science of the Total Environment, 2017,580:632-640.
[11] 尚 誉,杨丰隆,董轶茹,等.矸石山及其周边村庄土壤浸出液对大麦的毒性作用[J]. 环境科学, 2020,41(6):2936-2941.
Shang Y, Yang F L, Dong Y R, et al. Toxicity of soil leachate from coal gangue and its surrounding village of barley (Hordeum vulgare) [J]. Environmental Science, 2020,41(6):2936-2941.
[12] 郭盛华.煤矸石污染与综合利用的途径[J]. 环境科学, 1985,16(6):27-31.
Guo S H. Coal stone removal pollution and comprehensive utilization approach [J]. Environmental Science, 1985,16(6):27-31.
[13] Benjamin Hindersmann, Christine Achten. Urban soils impacted by tailings from coal mining: PAH source identification by 59PAHs, BPCA and alkylated PAHs [J]. Environmental Pollution, 2018,242: 1217-1225.
[14] 范维唐,杨锡禄.中国煤炭工业百科全书(地质·测量卷) [M]. 北京:煤炭工业出版社, 1996:456.
Fan W T, Yang X L. China coal industry encyclop aedia(Geology & Survey volame) [M]. Beijing: China Coal Industry Publishing House, 1996:456.
[15] 樊景森,浑凌云,骈 炜.峰峰五矿煤矸石山周围有机污染特征研究[J]. 环境工程, 2016,34(S1):828-832.
Fan J S, Hun L Y, Pian W. Organic pollution of coal gangue dump in No.5caol mine in fengfeng,China [J]. Enviromental Engineering, 2016,34(S1):828-832.
[16] 冯精兰,翟梦晓,申君慧,等.超声萃取-高效液相色谱法测定沉积物中多环芳烃[J]. 理化检测(化学分册), 2012,48(3):308-311.
Feng J L, Gai M X, Shen J H, et al. HPLC Determination of polycyclic aromatic hydrocarbons in sediment with ultrasonic extaction [J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2012,48(3):308-311.
[17] Carles P, Alejandra P, Josep R, et al. Analysis of alkyl and 2–6-ringed polycyclic aromatic hydrocarbons by isotope dilution gas chromatography/mass spectrometry: Quality assurance and determination in Spanish river sediments [J]. Journal of Chromatography A, 2006,1113(1/2):220-230.
[18] 马 艳,俞海鹰,陈玉山.刘桥高效选煤厂的设计与探讨[J]. 煤炭科技, 2001,(1):12-14.
[19] Stout S A, Emsbo-Mattingly S D. Concentration and character of PAHs and other hydrocarbons in coals of varying rank-Implications for environmental studies of soils and sediments containing particulate coal [J]. Organic Geochemistry, 2008,39:801-819.
[20] GB5751-86 中国煤炭分类[S].
GB5751-86 Coal classification in China [S].
[21] 张小凤,文雪琴,杨亚丽.不同变质程度煤中夹矸中多环芳烃的分布特征[J]. 煤炭技术, 2016,35(11):180-182.
Zhang X F, Wen X Q, Yang Y L. Distribution Characteristic of Polycyclic Aromatic Hydrocarbons(PAHs) in Different Coal Rank of Coals Gangue [J]. Coal Technology, 2016,35(11):180-182.
[22] 张黎明,周建伟,柴 波,等.合山煤矸石堆周边土壤中多环芳烃的空间分布特征[J]. 生态与农村环境学报, 2014,30(5):652-657.
Zhang L M, Zhou J W, Chai B, et al. Spatial Distribution of PAHs in Soils Around Coal Gangue Piles in Heshan [J]. Journal of Ecology and Rural Environment, 2014,30(5):652-657.
[23] 乔元栋,罗化峰,宁掌玄,等.煤矸石充填土壤中多环芳烃的迁移规律研究[J]. 中国煤炭, 2020,46(7):73-78.
Qiao Y D, Luo H F, Ning Z X, et zl. Stugy on the migration rule of polycyclic aromatic hydrocarbons in the soil filled with coal gangue [J]. China Coal, 2020,46(7):73-78.
[24] Li Y J, Wu Y D, Xu J, et al. Chemical characterization of particulate organic matter from commercial restaurants: Alkyl PAHs as new tracers for cooking. [J]. The Science of the Total Environment, 2017, 580:632-640.
[25] 陈 刚,周潇雨,吴建会,等.成都市冬季PM2.5中多环芳烃的源解析与毒性源解析[J]. 中国环境科学, 2015,35(10):3150-3156.
Chen G, Zhou X Y, Wu J H, et al. Source apportionment and toxicity quantitation of PM2.5-associated polycyclic aromatic hydrocarbons obtained from Chengdu, China. [J]. China Environmental Science, 2015,35(10):3150-3156.
[26] Zhang Y, Chen Y, Li R, et al. Determination of PM2.5-bound polyaromatic hydrocarbons and their hydroxylated derivatives by atmospheric pressure gas chromatography-tandem mass spectrometry [J]. Talanta, 2019,195:757-63.
[27] Nádudvari A, Fabiańska M J, Marynowski L, et al. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region [J]. The Science of the Total Environment, 2018,628-629:1462-1488.
[28] 孙 溶,陈颖军,韩 勇,等.典型烟煤中游离态母体及烷基多环芳烃的含量和组成特征[J]. 地球化学, 2017,46(4):358-366.
Sun R, Chen Y J, Han Y, et al. The concentration and composition characteristics of soluble parent and alkylated polycyclic aromatic hydrocarbons in typical bituminous coals [J]. Geochimica, 2017, 46(4):358-366.
[29] Sigve S, Nina G, Rainer G L, et al. Source identification of paromatic hydrocarbons in sediments using GC/MS [J]. Environmental Science & Technology, 1983,17:282-286.
[30] Mark B Y; Robie W M; Roxanne V, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002,33(4):489-515.
[31] 刘文静,李广坡,倪进治,等.土壤有机质组分中多环芳烃分配特征和生态风险[J]. 中国环境科学, 2020,40(4):1620-1627.
Liu W J, Li G P, Ni J Z, et al. Distribution patterns and ecological risks of polycyclic aromatic hydrocarbons in different soil organic matter fractions [J]. China Environmental Science, 2020,40(4):1620-1627.
[32] 梅卫平,阮慧慧,吴 昊,等.滴水湖水系沉积物中多环芳烃的分布及风险评价[J]. 中国环境科学, 2013,33(11):2069-2074.
Mei W P, Ruan H H, Wu H, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Dishui Lake water system [J]. China Environmental Science, 2013,33(11):2069-2074.
[33] 鲁垠涛,王雪雯,张士超,等.黄河全流域岸边表层土壤中PAHs的分布、来源及风险评估[J]. 中国环境科学, 2019,39(5):2078-2085.
Lu Y T, Wang X F, Zhang S C, et al. Distribution, source and risk assessment of PAHs in surface soil of the Yellow River Basin [J]. China Environmental Science, 2019,39(5):2078-2085.
[34] Ramachandran S D, Hodson P V, Khan C W, et al. Oil dispersant increases PAH uptake by fish exposed to crudeoil [J]. Ecotoxicology and Environmental Safety, 2004,59(3):300-308.
[35] 张 娟,吴建芝,刘 燕.北京市绿地土壤多环芳烃分布及健康风险评价[J]. 中国环境科学, 2017,37(3):1146-1153.
Zhang J, Wu J Z, Liu Y. Polycyclic aromatic hydrocarbons in urban green space of Beijing: distribution and potential risk [J]. China Environmental Science, 2017,37(3):1146-1153.
[36] Atmospheric quality standards and criteria [R]. Gouvernement du Québec, Canada, 2021.
[37] Khalili N R, Scheff P A, Holse T. PAH source fingerprints for coke ovens, diesel and gasoline-engines,highway tunnels and wood combustion emissions [J]. Atmos. Environ., 1995,29(4):533-542.
[38] Wirgin I, Waldman J R. Resistance to contaminants in North American fish populations. [J]. Mutat. Res., 2004,552(1/2):73-100.
[39] Golzadeh N, Barst B D, Baker J M, et al. Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstoneree Nation in Alberta, Canada [J/OL]. Environmental Pollution, https://doi.org/10.1016/j.envpol.2021.116625.
[40] Risk assessment guidance for superfund (RAGS), Vol.I: Human health evaluation manual (part E), Supplemental guidance from dermal risk assessment [Z]. US EPA, 2004.
Pollution characteristics and toxicity assessment of PAHs in coal gangue from mine aera in Huaibei.
CHEN Xue1,2, XU Dan-dan1, QIAN Ya-hu1, HONG Xiu-ping3, LIANG Han-dong1,2*
(1.State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China;2.College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China;3.College of Life Sciences, Huaibei Normal University, Huaibei 235000, China)., 2022,42(2):753~760
In this paper, we collected 13 gangue samples (7 fresh samples and 6 weathered samples) from Liuqiao Mine in Huaibei, and 16 parent polycyclic aromatic hydrocarbons (16 PAHs) and alkyl-polycyclic aromatic hydrocarbons (a-PAHs) were analyzed by GC-MS/MS on qualitative and quantitative. The results showed that 16PAHs and a-PAHs were generally contained in coal gangue, and the content level of a-PAHs (∑a-PAHs average 587.88ng/g,=13) was generally higher than that of 16PAHs (∑16PAHs average 505.23ng/g,=13). The most abundant substance was naphthalene, phenanthrene and chrysene , accounted for 15%, 33% and 15% of ∑16PAHs, respectively. Alkyl-naphthalene and alkyl-phenanthrene in the content of the advantage, accounted for 22% and 40% of ∑a-PAHs. The contents of ∑16PAHs and ∑a-PAHs in the weathered samples was higher than those in the fresh samples. Only the contents of Benzoapyrene and C2-phenanthrene decreased after weathering, and the corresponding contents of C1-Benzoapyrene and phenanthrene increased after weathering. The characteristic ratio shown that the coal gangue samples satisfy 0<0/(0+1-4) PHE<0.25 and 0.2<0/(0+1-5) NAP<0.55; apply these ratios to PAHs of coal, petroleum, sediment also have a good dispersion. Therefore, these ratios can be used for identify PAHs from coal gangue. Through the toxicity evaluation of coal gangue, the average Benzoapyrene toxicity equivalent concentration reached 194.60ng/g, in which a-PAH contributed most of the toxicity equivalent concentration. This study provides basic experimental data for the source of PAHs and reveals the possible ecological risks of PAHs in coal gangue.
coal gangue;a-PAHs;weathering;characteristics ratio;toxic equivalent ( TEQ)
X503
A
1000-6923(2022)02-0753-08
陈 雪(1998-),女,山东日照人,中国矿业大学(北京)硕士研究生,主要从事环境分析化学研究.发表论文1篇.
2021-07-05
国家自然科学基金资助项目(41772157);国家自然科学青年基金资助项目(41902172)
* 责任作者, 教授, HDL6688@vip.sina.com