LED光照对青熟香蕉贮运中后熟调控的影响

2021-12-30 02:50刘帮迪张雅丽柯泽华周新群
农业工程学报 2021年20期
关键词:果胶紫光乙烯

刘帮迪,张雅丽,3,柯泽华,3,孙 静,周新群,孙 洁

•农产品加工工程•

LED光照对青熟香蕉贮运中后熟调控的影响

刘帮迪1,2,张雅丽1,2,3,柯泽华1,2,3,孙 静1,2※,周新群1,2,孙 洁1,2

(1. 农业农村部规划设计研究院,北京 100125;2. 农业农村部农产品产后处理重点实验室,北京 100121;3. 河北工程大学生命科学与食品工程学院,邯郸 056038)

为了解决香蕉贮运过程中常温运输品质劣变较快、贮运后乙烯催熟程度不可控制的问题。该研究以低成熟度香蕉为模拟贮运试材,研究红、橙、黄、绿、蓝、紫色LED单色光在常温(20 ℃)模拟贮运过程中延缓保鲜和催熟调控作用,以确定香蕉在不同波段光色照射下的后熟和品质变化。结果表明,蓝、紫光可以通过抑制香蕉呼吸强度和乙烯释放量,与无光照相比有效延长香蕉2 d的贮藏期、减少纤维素分解为果胶、防止硬度软化、抑制色泽转黄和淀粉-糖转化,蓝光的延缓后熟能力比紫光更好。红、橙光LED照射可以促使呼吸和乙烯高峰提前2 d,促进表皮转色,增加蔗糖、果糖和葡萄糖累积,从而有效促进香蕉成熟,橙光比红光照射的催熟效果更缓慢,可以达到精准催熟的效果。黄、绿光照射会扰乱香蕉的后熟进程,缩短2 d贮运期,在表皮转色程度较低的情况下累积更多丙二醛,并抑制呼吸、乙烯释放、淀粉-糖转化和纤维素降解作用,使香蕉在未完全后熟的情况下提前进入衰老腐烂阶段。总体来说,不同波段的6种LED光色处理香蕉,可以表现出延缓后熟、促进后熟和扰乱后熟3种不同的效果。研究结果为LED光照技术被更多的应用和研究在果蔬采后保鲜领域提供基础数据,也为节能保鲜和可调控催熟技术应用于香蕉实际生产提供参考依据。

光照;贮藏;运输;LED;青熟香蕉;后熟调控;保鲜;催熟

0 引 言

香蕉是中国产量排名前十的大宗水果之一,其种植产区分布于中国南方各省份,总种植面积超过35万hm2,年产量超过1 300万t[1]。香蕉产业对促进中国农村经济发展、农业增效和农民增收等方面具有十分重要的作用[2-3]。

香蕉属于呼吸跃变型水果,该类果实采收后会逐步释放乙烯,出现呼吸高峰,从而导致一系列的生理生化变化[4],使该类果实逐步转为可食用状态。中国香蕉主产区域采收季节的温湿度较高,为了增加香蕉的耐贮性,香蕉产业农户都统一标准在低成熟度时进行采收,使用冷藏贮运,并在销售前进行人工催熟处理达到可食用状态[5]。但香蕉是一种典型的冷敏性果实,低成熟度香蕉在冷链贮运过程中比高成熟的香蕉更容易丧失正常的代谢生理功能,从而出现无法正常后熟或以假性成熟为代表的冷害症状,失去商品性[6],这是中国香蕉产业产生损失的主要原因之一[7]。目前,在产业应用和研究上,香蕉延长贮藏期的主要保鲜方式是12~14℃低温贮运或常温贮运,催熟方式主要是使用乙烯利催熟[8]。虽然乙烯利是一种低毒性的植物生长调节剂,已在大量的呼吸跃变型果实催熟上商业应用。但实际生产和研究上,国内外的香蕉乙烯利催熟技术存在着标准缺失和粗放使用的现象,经常导致人工催熟香蕉的成熟度不可控、商品质量差、货架期缩短、过熟造成腐烂等问题[9]。因此,研究新型的香蕉延缓保鲜和精准催熟技术对规范香蕉产业、提质减损和提升经济效益有重要意义。

发光二极管(Light-emitting Diode,LED)技术是一种应用于果蔬保鲜的技术,近年来大量研究在鲜切加工果蔬和采后果实品质调控上[10]。研究指出,LED照射可以有效调控果蔬乙烯的产生和呼吸速率[11]。如Olarte等[12]和刘帮迪等[13]的研究发现LED红光照射可以调控某些植物光合作用,因此对含叶绿素蔬菜在采后贮藏过程中产生明显的呼吸抑制作用,从而使鸡毛菜、西兰花衰老速率降低。Dhakal 等[14]对番茄的研究发现,LED白光照射同样可以延缓番茄后熟、软化的进程。Kokalj等[15]使用黄色LED光照射番茄、灯笼椒和苹果,发现黄光可以延缓这3种果蔬的后熟、衰老进程,保留生物活性物质含量。但也有研究指出,蓝色、红色和绿色LED光照射可以促进草莓、香蕉的呼吸速率和乙烯释放量增加,从而加速果实脱绿、软化和腐烂[16-17]。由此可见,LED技术可以作为一种果蔬贮运过程中延缓衰老和催熟的物理保鲜技术。但目前针对不同类型的果蔬在不同LED光质、光色、光强下的后熟、衰老表现还欠缺充分的研究。因此,本研究使用不同LED光色对低成熟度香蕉进行照射处理,观察香蕉的后熟、衰老现象,并采用自行研发设备,在模拟香蕉贮运流程中找出适合香蕉在短期、中期和长期贮运的LED照射波段,以期为香蕉贮运过程中后熟调控和精准催熟技术提供理论依据。

1 材料与方法

1.1 试验材料

试验所用香蕉品种为福建生产的巴西蕉(. cv. Brazil),采购自北京新发地批发市场,通过(13±0.5)℃冷链运输车运至北京实验室,运输过程中试验用香蕉和普通商品香蕉进行统一运输,香蕉采收和运输至实验室时间不超过4 d。为了保证试验材料的随机性,采取了无挑选、无差别取样的原则,因此香蕉蕉指的选取上仅剔除了病、坏、腐、颜色成熟度差异大的蕉指,每组样品中均有体型较大和较小的蕉指,样品到达北京实验室的时候成熟度均一,试验用香蕉采收成熟度根据国际香蕉成熟度标准比色卡进行判断[18],成熟度为次低成熟。

1.2 试剂与仪器

主要试剂:乙酰溴(分析纯,上海贤鼎生物科技有限公司);-巯基乙醇(分析纯,美国Sigma公司);硫酸、乙酸、正己烷、三氯乙酸、四硼酸钠、盐酸羟胺(分析纯,北京化工厂);无水甲醇、聚乙烯吡咯烷酮K30、焦亚硫酸钠、溴化乙酰(分析纯,国药集团化学试剂有限公司)。

主要仪器:AX224ZH电子天平,奥豪斯仪器(常州)有限公司;UV-1800PC型紫外可见分光光度计,上海美谱达仪器有限公司;TGL-16gR高速冷冻离心机,上海安亭科学仪器厂;CHROMA METER CR-400色差计,日本柯尼卡美能达传感公司;GY-3型水果硬度计,浙江托普仪器有限公司;GC7890F气相色谱仪,上海天美科学仪器有限公司。

图1是自行研发LED光照保鲜箱盖在3种视角下的视图,箱盖主要包括3个部分,分别是LED光照保鲜灯带组、触控面板和抽风、送风系统,具体零部件如图1所示。箱盖的LED光照系统由4个LED灯组组成,单个灯带组的LED灯条排布如图2所示。选择可见光波段的红、橙、黄、绿、蓝、紫6种光色组成一组灯带组,每种光色的具体波段如图2所示。箱盖中的抽风、送风系统是为了进行散热、除湿所设置,该系统可以解决灯带散热、密闭湿度升高的问题。箱盖设计的触控面板,可以在表面进行光色、光强、开关频率等简易设定操作,并且该箱盖仅需链接普通蓄电池即可正常启动使用。箱盖设计的卡扣可以适配市面上使用最多的长宽高为48.0 cm×34.5 cm×60.0 cm的果蔬运输箱体。

1.3 试验方法

1.3.1 LED保鲜箱盖的设定和香蕉模拟贮运的处理方法

将统一采购的香蕉运往实验室后,对发生病害、冷害、腐烂的香蕉蕉指剔除,并使用国际香蕉成熟度标准比色卡进行成熟度判断[18],仅保留次低成熟的蕉指作为试验样品。使用蒸馏水对成熟度均一的蕉指进行逐个冲淋清洗,去掉蕉指表面的寄生虫、枯枝树叶等杂物,处理好的香蕉蕉指在常温下晾干待用。由于真实贮运过程中外界温度、相对湿度条件和物理损伤的不确定性较大,为了增加试验可重复性,香蕉的常温贮运过程采取模拟试验进行。试验于北京的实验基地进行,为模拟恒定的常温环境,在(20.0±0.7)℃、80%±5%相对湿度的恒温恒湿的车间中,使用DC-600-6/SC-0606型电动震动系统进行模拟贮运试验,模拟运输车辆设定的环境振动参数参考王子蕊[19]的研究,环境振动参数包括台体频率范围为2~5 000 HZ,最大加速度为980 m/s2,最大速度为2.0 m/s,最大连续位移为50 mm。

在振动系统台架上放置6个LED光照试验组别和1个对照CK组,每个处理组别堆叠三层框体,每层货物框体的尺寸为48.0 cm×34.5 cm×60.0 cm,框体内单层平铺放置约8.0 kg清洗后的香蕉蕉指,同批次试验中每个处理组共处理约20.0 kg的样品。试验样品铺放完成后,为每个货物框体表面盖上自行研发设计的LED箱盖,等待开启试验。整个试验分三批次模拟贮运进行,单个LED光照试验组别三批次模拟贮运香蕉样品的处理量共约60.0 kg。

7个试验组别分别为(CK)对照组,盖上箱盖后不进行开灯组别;(L6)红光组,盖上箱盖后设定参数为>640~700 nm的红光长期照射;(L5)橙光组,盖上箱盖后设定参数为>605~640 nm的橙光长期照射;(L4)黄光组,盖上箱盖后设定参数为>565~605 nm的黄光长期照射;(L3)绿光组,盖上箱盖后设定参数为>505~565 nm的绿光长期照射;(L2)蓝光组,盖上箱盖后设定参数为>440~550 nm的蓝光长期照射和(L1)紫光组,盖上箱盖后设定参数为>400~440 nm的紫光长期照射。模拟常温贮运试验持续8 d,在开启模拟贮运试验后,每24 h进行观察,每48 h进行取样,单个处理组单批次取样量约为2.0 kg,三批次共约6.0 kg。将取样蕉指切分后,留存于-20 ℃冰箱中等待后续理化检测。

1.3.2 淀粉含量和可溶性糖含量的测定

香蕉淀粉含量采用酸水解法测定[20],以质量分数(%)表示。香蕉可溶性糖含量采用HPLC-ELSD法测定[21],分别测定香蕉中主要含有的蔗糖、葡萄糖和果糖,以mg/g为单位。

1.3.3 色泽和硬度的测定

香蕉色泽的测定分别取果指上、中、下3点,采用色差计测定,每个取样点测定20个蕉果,记录、和值,取平均值。硬度采用水果硬度计对香蕉切段后的果肉进行测定,单位以N表示。

1.3.4 呼吸强度和乙烯释放量的测定

香蕉的呼吸强度和乙烯释放量的测定参考Liu等[22]采用气相色谱法进行,呼吸强度单位以mL/(kg·h)表示,乙烯释放量的单位以L/(kg·h)表示。

1.3.5 香蕉丙二醛含量的测定

丙二醛(Malondialdehde,MDA)含量的测定基于硫代巴比妥酸(Thiobarbituric acid,TBA)法进行[23],MDA含量单位计为mol/g。

1.4 数据处理

所有试验重复3次,使用Excel 2010进行绘图,结合SPSS 18.0软件进行显著性分析,不同字母表示在0.05水平有显著差异。

2 结果与分析

2.1 不同光色LED照射对香蕉贮运期成熟状态的影响

在香蕉的实际贮运销售中,果皮色泽是实际应用中判断成熟度的最直观指标[24]。图3是青熟香蕉在蓝、紫、红、橙、黄、绿光色照射和黑暗对照条件下的模拟贮运状态。黑暗条件下,香蕉的常温贮运期为6 d,在第2天出现果皮由绿转黄的转色现象,第4天时几乎转为明黄色,同时出现典型的呼吸高峰和乙烯释放高峰(图4 a和b),4 d之后香蕉表皮出现成熟特征的散点型炭疽病黑点[25],6 d后香蕉的腐烂情况加剧,多数香蕉超出可食用状态。在此条件下,香蕉属于典型的自然成熟状态,随着后熟果皮由青绿转至金黄,此时开始可以食用,随着果实的进一步成熟,果实开始衰老,果皮褐变,长出黑点,并逐渐扩散。此外,丙二醛含量也是判断呼吸跃变型果实后熟衰老状态的常用指标,果实青熟状态时丙二醛含量维持在较低水平,随着成熟丙二醛逐渐累积,在衰老过程中继续上升趋于平缓[26],图4中黑暗CK组香蕉丙二醛的变化趋势和其他果实一致。

经过蓝光和紫光LED照射的香蕉,其常温贮藏周期被延长至8 d以上,并且最终香蕉的成熟状态较CK组更低。如图4a和b所示,蓝光照射的香蕉呼吸强度和乙烯释放量呈现逐渐上升趋势,模拟贮运8 d后的值均上升比其他组别低。紫光照射的香蕉呼吸强度和乙烯释放高峰均出现在第6天,蓝、紫光呼吸强度峰值分别是CK的44.38%和53.20%。与CK相比,蓝、紫光照射组别香蕉较其他组别同一时间香蕉色泽的色差Δ差异更小(图5)。蓝、紫光处理后呼吸作用和乙烯释放高峰出现时间延后,说明蓝、紫光都具有延缓香蕉后熟的能力,许多呼吸跃变型果实也都被证实在不同LED光色照射下可以调控其呼吸和乙烯水平,从而抑制其后熟[27]。此外,蓝、紫光照射香蕉较低的丙二醛含量也证实了该处理抑制后熟、延缓衰老和保证品质的能力。

经过红、橙光照射下的青熟香蕉常温贮运期外观和CK组相同,在6 d后丧失可食用和销售性。但通过图3外观变化和图5的色差可以看出,红、橙光照射6 d的香蕉比黑暗条件6 d的香蕉黄色着色更深,饱和度更高,色差值Δ差异更大,红、橙光照射8 d后的香蕉Δ达到94.70和83.25,明显高于其他组别。红光和橙光照射下香蕉的呼吸强度和乙烯释放高峰比其他LED照射组和CK组提前2 d出现,并且红光照射的呼吸强度和乙烯释放量峰值比CK高出24.20%和23.97%,这说明红光照射下的香蕉催熟作用比橙光更加明显;橙光照射的香蕉呼吸强度和乙烯释放量高峰虽然也提前在第2天出现,但峰值显著低于红光组(<0.05)。从图6 MDA含量可以看出,红、橙光香蕉在第6天时的丙二醛含量显著高于CK组(<0.05),这也证实红、橙光能够对香蕉进行催熟。部分LED光照保鲜的研究中也指出LED照射可以通过刺激乙烯释放加快呼吸跃变型果实的后熟衰老进程[28-29],提前使果实进入可食用状态。但本研究中也发现,经过LED红、橙光照射成熟的香蕉并没有出现CK组的散点状斑点,这种香蕉炭疽病现象是消费者判别香蕉成熟的一个重要指示,这说明LED光照在提升香蕉乙烯释放和呼吸时可能抑制香蕉的炭疽病发生。

黄光和绿光照射的香蕉贮运期小于4 d,在第4天时大部分样品的外观转变为不可食用状态。并且这两种光色下照射的香蕉出现明显大面积锈斑病理现象;此外,从图3和图5可以看出黄、绿光组香蕉果皮的色差值Δ均低于CK组和红、橙光组,黄、绿光照射4 d后的Δ仅为40.35和46.23,并且果皮部分转黄、部分尚未退绿。从图4a呼吸强度和图4b乙烯释放量可以看出黄、绿光组香蕉的呼吸在4 d内持续上升并一直保持较低的状态,第4天时的最终值显著低于CK组的峰值(<0.05)。结合色泽、呼吸和乙烯的结果,发现黄、绿光照射的香蕉可能出现假熟现象[30],这种现象一方面可能是大量研究证实的LED光照可以对植物的叶绿素起到保护作用[31],从而使香蕉果皮部分保持绿色。另一方面这两个处理组别香蕉并未在生理上达到成熟,反而诱导发病进入衰老进程,在其他果实上也出现了不适宜波段和光色的LED光照处理促使果实加速腐烂的研究结果,雷静等[32]在樱桃番茄的研究中也发现蓝光处理樱桃番茄不能促使完全成熟和转色,且蓝光照射后的果实出现凹陷病理状态,加快腐烂进程。

图6 不同LED光色照射对香蕉丙二醛含量的影响

2.2 不同光色LED照射对香蕉贮运期食用特性的影响

香蕉果实在后熟的过程中,虽然色泽转变可以被检测作为直接判定指标,但由于香蕉“青皮熟”现象的限制,在实际应用中更多的从淀粉-糖含量的食用特性上对其后熟状态进行判定。其中变化最大的是淀粉的含量,Ritesh等[33]对Bhimkol野生香蕉的研究中指出,未成熟的野生香蕉果实淀粉含量达到约200 mg/g,成熟软化时,淀粉含量持续下降最终甚至降低到10 mg/g,与此同时,以蔗糖、果糖、葡萄糖为主的可溶性糖含量迅速增加至150~200 mg/g,达到最佳食用品质和耐贮藏状态,当可溶性糖含量继续上升时出现退糖软腐的衰老现象[34]。图 7b、c、d是青熟香蕉在不同LED光照下蔗糖、葡萄糖和果糖含量的变化情况。CK组青熟香蕉在自然状态下蔗糖和葡萄糖都呈现先逐渐上升至顶峰后下降的趋势,其峰值出现时间与呼吸作用和乙烯释放量高峰一致,蔗糖上升更为明显,峰值是初始时香蕉的6.17倍。CK组香蕉果糖含量在自然成熟中呈现持续上升的状态,与初始相比,第6天的香蕉果糖上升超过6倍。从图7 a可以看出青熟香蕉的淀粉含量变化与糖含量呈相反趋势,6 d成熟过程中CK组香蕉淀粉含量下降了37.68%。

在蓝、紫光照射下的香蕉3种糖变化趋势明显低于CK组,且呈现持续缓速上升的趋势,没有明显的高峰,证明香蕉没有进入典型的呼吸跃变状态[34]。蓝光照射组对香蕉最终3种可溶性糖含量上升的抑制效果比紫光组更为显著(<0.05),三种可溶性糖最终总量是紫光组的80.32%、CK组的51.71%。此外,蓝光照射的香蕉淀粉含量下降趋势也比紫光照射更缓慢。证明蓝光对延缓后熟衰老、保持香蕉耐贮藏性和食用性比紫光照射更有效。

由于红光照射使香蕉呼吸和乙烯高峰期提前,2种可溶性糖含量(蔗糖和葡萄糖)的峰值均出现在第4 天,且2种糖的峰值达到105.2 mg/g、49.87 mg/g,均明显高于CK组(<0.05),这证明红光不仅可以增加呼吸强度和乙烯释放量,还可以使其快速进入最佳可食用状态,但其后续耐贮藏性可能降低[34-35]。橙光照射下香蕉的三种糖和淀粉含量的变化趋势与CK组相同,蔗糖、葡萄糖含量的高峰出现在第4天,果糖持续上升,淀粉含量持续下降,但6 d时的总糖含量和淀粉含量分别为149.70 mg/g、31.10 mg/g,略高于CK组。这说明橙光照射可能有较缓催熟香蕉的作用,既能够促使香蕉淀粉分解、加快糖含量累积程度,提升食用性,又能够保证香蕉不过快地通过后熟阶段进入衰老进程。橙光照射的香蕉催熟效果接近于王文萍[36]使用定量和定比例乙烯利精准催熟香蕉的效果,可以避免香蕉催熟过程中的催熟剂量使用不当导致的过熟腐烂。

黄光和绿光照射的香蕉淀粉含量大幅度下降,第4天的淀粉含量仅为24.56 mg/g和27.65 mg/g,显著低于其他组别(<0.05)。这两个处理组的可溶性糖含量在4 d内的变化趋势和CK组不同,仅呈现逐渐上升趋势但并无下降趋势,但第4天的三种糖含量数值均显著低于CK组(<0.05)。结合黄光、绿光照射香蕉乙烯和呼吸的情况分析,可能是黄、绿光诱导香蕉出现内源性生理损伤[37],导致表皮部分变黄,淀粉快速被分解消耗,但可溶性糖转化被抑制,无法正常后熟而快速腐烂。

2.3 不同光色LED照射下香蕉软化规律和原果胶、可溶性果胶、纤维素含量的变化

果实软化是所有果实成熟及衰老的一个重要标志[38],果蔬在采后贮藏过程中硬度会随着呼吸、乙烯高峰期的出现逐渐软化,这与果实中含有的果胶物质、半纤维素和淀粉含量减少有关[39]。通常,呼吸跃变型果实的果胶、纤维素等物质的分解减少和果实的呼吸强度、乙烯释放量成正相关[40]。因此,质构和果胶、纤维素含量的变化,也可以侧面验证香蕉的成熟状态。图8a是香蕉果肉的硬度变化,图8 b、c、d是香蕉的纤维素含量、原果胶、可溶性果胶的变化。CK组的香蕉在自然成熟过程中硬度呈下降趋势,在第4天时硬度下降的速率激增,后续逐渐平缓,和初始状态相比,CK组贮藏6 d后硬度下降比率达33.42%,表现出典型的呼吸跃变型果实在自然成熟下硬度与乙烯释放量、呼吸作用呈负相关的关系[41]。香蕉纤维素含量和硬度的下降趋势相同,这是因为青熟香蕉在成熟过程中淀粉和纤维素大量减少,转化为果胶和糖类物质[37]。CK组原果胶在第4天出现明显的峰值(21.21 mg/g),可溶性果胶呈持续上升的趋势,最终第6天含量达到42.78 mg/g。这是由于在成熟度较低的果实中,果胶物质与纤维素紧密结合在一起,以原果胶等形式存在,果实后熟过程随着呼吸和乙烯的变化,逐步降解果实的结构支撑物质,果实中的果胶物质逐渐与纤维素分离形成可溶性果胶[40]。

蓝、紫光照射组别香蕉的硬度和纤维素含量下降比CK组平缓,8 d时蓝光照射组硬度和纤维素含量分别为26.6N和44.71 mg/g,紫光照射组的硬度和纤维素含量下降略低于蓝光组但高于其他组别,蓝、紫光照射8 d的香蕉最终硬度仍然比CK组自然成熟6 d的香蕉高出2.5和0.1 N,说明蓝光和紫光对于香蕉后熟中细胞壁完整度和质地的保持有效。红、橙光照射的香蕉硬度和纤维素含量在贮运末期的下降比例均明显高于CK组,并且原果胶含量伴随呼吸高峰出现峰值,可溶性果胶含量均显著高于CK(橙光和红光比CK组分别高出8.33和14.77 mg/g,<0.05)。说明红、橙光照射组别在促进香蕉呼吸代谢和乙烯释放的同时,也可能刺激香蕉细胞壁的多聚半乳糖醛酸酶和纤维素酶活性,从而促使香蕉加快软化,达到催熟效果。这与LED光照技术在草莓采后成熟、转色、软化的结果相似,特定LED光照刺激可以促进转色和软化相关酶活性,加快成熟进程[42]。

黄光和绿光照射的香蕉在4 d内硬度呈下降趋势,但4 d贮藏期后的硬度高于CK组(黄、绿光最终硬度是CK的1.25和1.15倍)。黄、绿光照射样品纤维素含量下降显著(<0.05),4 d时原果胶和可溶性果胶含量较初始值略微上升。黄光和绿光照射香蕉,在质地和细胞壁关键物质含量的变化与淀粉-糖含量、丙二醛含量的变化趋势不一致,说明在这两种光色照射下的香蕉没有呈现自然后熟和衰老状态。这可能是由于黄、绿光照射下香蕉的活性氧代谢遭受破坏,导致活性氧和丙二醛等代表植物衰老腐烂的物质逐渐累积[26],从而使呼吸、乙烯、糖、酸、细胞壁等代谢途径出现紊乱[41],促使果实产生一系列生理病害。例如Toledom等[43]在光照处理菠菜的研究中报道经过24 d的连续光照后,菠菜抗坏血酸等抗氧化活性物质下降了44%;Carmen等[44]在西兰花和花椰菜的研究中报道不当光照处理不仅不能促进光合作用,还会增加其呼吸作用,导致损失率增加。

3 结 论

本试验系统的使用可见光全光谱的6种代表光色对香蕉在模拟贮运条件下进行照射处理,发现不同光色照射下香蕉的后熟衰老进程呈现3种不同的表征。

1)综合香蕉后熟的各项指标发现,>640~700 nm红光和>605~640 nm橙光照射可以分别快速地促进香蕉的后熟,这两种光色下可以刺激转色、加快呼吸强度和乙烯释放量,加快淀粉、纤维素和原果胶分解,增加可溶性糖和可溶性果胶的累积,从而促使香蕉快速达到可食用状态,此外橙光照射的催熟速率较红光更缓慢,可被开发为精准调控后熟的技术。

2)>440~550 nm蓝光和>400~440 nm紫光照射可以通过抑制香蕉呼吸和乙烯释放,从而达到延缓保鲜贮藏期和品质的目的,使色泽、质地、可溶性糖等指标更接近青熟香蕉状态。

3)>565~605 nm黄光和>505~565 nm绿光照射不能促进呼吸作用和乙烯释放,但导致香蕉丙二醛迅速累积,致使香蕉快速丧失可食用性。

本研究为以香蕉为代表的呼吸跃变型果实保鲜和催熟技术提供了一种新的方法和理论依据,但对于相关光照条件下香蕉出现不同表征现象的具体代谢机理还尚待研究。

[1] 胡从九. 浅析世界香蕉市场变化及趋势[J]. 中国热带农业,2020(6):39-41,11.

Hu Congjiu. Analysis on the change and trend of banana market in the world[J]. China Tropical Agriculture, 2020(6): 39-41, 11. (in Chinese with English abstract)

[2] 谢江辉. 新中国果树科学研究70年:香蕉[J]. 果树学报,2019,36(10):1429-1440.

Xie Jianghui. Fruit scientific research in New China in the past 70 years: Banana[J]. Journal of Fruit Science, 2019, 36(10): 1429-1440. (in Chinese with English abstract)

[3] 刘彦英,倪珊珊,项蕾蕾,等. 香蕉靶基因的克隆及其在低温胁迫下的表达分析[J]. 果树学报,2020,37(1):29-39.

Liu Yanying, Ni Shanshan, Xiang Leilei, et al. Cloning of miR408b target geneand analysis of its expression under cold stress in banana[J]. Journal of Fruit Science, 2020, 37(1): 29-39. (in Chinese with English abstract)

[4] Elbagoury M, Turoop L, Runo S, et al. Regulatory influences of methyl jasmonate and calcium chloride on chilling injury of banana fruit during cold storage and ripening[J]. Food Science & Nutrition, 2020, 9(2): 929-942.

[5] 魏军亚,耿沙,刘跃威,等. 乙烯利处理对采后宝岛蕉果实后熟期品质的影响[J]. 热带农业科学,2021,41(1):68-73.

Wei Junya, Geng Sha, Liu Yuewei. Effect of ethephon treatment onquality of postharvest baodao banana fruit[J]. Chinese Journal of Tropical Agriculture, 2021, 41(1): 68-73. (in Chinese with English abstract)

[6] 邹冬梅,李敏,高兆银,等. 香蕉采收及贮运保鲜技术[J]. 农村新技术,2020(8):58-59.

Zou Dongmei, Li Min, Gao Zhaoyin, et al. Banana harvesting, storage and fresh-keeping technology[J]. Rural New Technology, 2020(8): 58-59. (in Chinese with English abstract)

[7] 李倩,沈春生,林启昉,等. 采后香蕉果实冷害发生与控制技术研究进展[J]. 果树学报,2021,38(5):817-827.

Li Qian, Shen Chunsheng, Lin Qifang, et al. Advances in research on the chilling injury occurrence and control technologies of postharvest banana fruit[J]. Journal of Fruit Science, 2021, 38(5): 817-827. (in Chinese with English abstract)

[8] 王全永,欧燕芳. 我国香蕉产业标准化现状和对策[J]. 中国标准化,2021(3):147-152.

Wang Quanyong, Ou Yanfang. Present situation and countermeasures of banana industry standardization in China[J]. China Standardization, 2021(3): 147-152. (in Chinese with English abstract)

[9] 游淑玲. 香蕉富氧控温催熟技术的研究与应用[J]. 福建热作科技,2015,40(3):15-18.

You Shuling. Research and application of banana ripe technology with enriched oxygen and temperature control[J]. Fujian Science & Technology of Tropical Crops, 2015, 40(3): 15-18. (in Chinese with English abstract)

[10] 刘泽松,史君彦,王清,等. 辐照技术在果蔬贮藏保鲜中的应用研究进展[J]. 保鲜与加工,2020,20(4):236-242.

Liu Zesong, Shi Junyan, Wang Qing, et al. Research advance on application of irradiation technology in storage and preservation of fruits and vegetables[J]. Storage and Process, 2020, 20(4): 236-242. (in Chinese with English abstract)

[11] 董俊岑,高溯楠,陈健初. 发光二极管光照食品保鲜技术的应用进展及展望[J/OL]. 食品工业科技, 2021, 1-13[2021-05-11]. https: //doi. org/10. 13386/j. issn1002-0306. 2020080116.

Dong Juncen, Gao Sunan, Chen Jianchu. Application progress and prospect of light-emitting diode light technology in food preservation[J/OL]. Science and Technology of Food Industry, 2021, 1-13[2021-05-11]. https: //doi. org/10. 13386/j. issn1002-0306. 2020080116. (in Chinese with English abstract)

[12] Olarte C, Sanz S, Federico J, et al. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower[J]. LWT - Food Science and Technology, 2008, 42(1): 402-411.

[13] 刘帮迪,孙静,孙洁,等. 不同LED照射方式对鸡毛菜货架期品质及活性氧代谢影响[J]. 保鲜与加工,2021,21(4):7-16.

Liu Bangdi, Sun Jing, Sun Jie, et al. Effects of different LED illumination modes on shelf life quality and reactive oxygen metabolism of Chinese little greens[J]. Storage and Process, 2021, 21(4): 7-16. (in Chinese with English abstract)

[14] Dhakal R, Baek K H. Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes[J]. Postharvest Biology and Technology, 2014, 90: 73-77.

[15] Kokalj D, Hribar J, Cigić B, et al. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit[J]. Food Technology and Biotechnology, 2016, 54(1): 228-235.

[16] Nassarawa S S, Abdelshafy A M, Xu Y, et al. Effect of light-emitting diodes (LEDs) on the quality of fruits and vegetables during postharvest period: A review[J]. Food and Bioprocess Technology, 2021, 14(1): 388-414.

[17] Huang J Y, Xu F, Zhou W. Effect of led irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture, 2018, 98(14): 5486-5493.

[18] 傅金凤,王娟,王琳,等. 特色香蕉类型‘美食蕉’品种果肉中淀粉与矿物质在后熟期的变化[J]. 食品科学,2021,42(1):86-92.

Fu Jinfeng, Wang Juan, Wang Lin, et al. Changes of starch and minerals in pulp of plantain cultivars (spp. AAB) during postharvest ripening[J]. Food Science, 2021, 42(1): 86-92. (in Chinese with English abstract)

[19] 王子蕊. 苹果运输包装振动损伤特性的研究[D]. 天津:天津科技大学,2016.

Wang Zirui. Study on Vibration Damage Characteristics of Apple Transportation package[D]. Tianjin: Tianjin University of Science and Technology, 2016. (in Chinese with English abstract)

[20] 曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社,2009.

[21] 陈丽花,郝德兰,夏彬,等. 香蕉催熟过程中生理生化指标变化分析及其品质评价模型的建立[J]. 现代食品科技,2018,34(10):147-155.

Chen Lihua, Hao Delan, Xia Bin, et al. Analysis of changes of physiological and biochemical parameters in banana ripening process and establishment of banana quality evaluation model[J]. Modern Food Science and Technology, 2018, 34(10): 147-155. (in Chinese with English abstract)

[22] Liu B, Jiao W, Wang B, et al. Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life[J]. Scientia Horticulturae, 2019, 249: 100-109.

[23] Liu B, Zhao H, Fan X, et al. Near freezing point temperature storage inhibits chilling injury and enhances the shelf life quality of apricots following long-time cold storage[J]. Journal of Food Processing and Preservation, 2019, 43(7): 1-9.

[24] Satekge K, Magwaza S. The combined effect of 1-methylcyclopropene (1-MCP) and ethylene on green-life and postharvest quality of banana fruit[J]. International Journal of Fruit Science, 2020, 20: 1539-1551.

[25] 邹冬梅,高兆银,李敏,等. 香蕉主要采后病害及防控技术[J]. 中国热带农业,2018(3):35-37,34.

Zou Dongmei, Gao Zhaoyin, Li Min, et al. Main postharvest diseases of bananas and their prevention and control techniques[J]. China Tropical Agriculture, 2018(3): 35-37, 34. (in Chinese with English abstract)

[26] 刘帮迪,范新光,舒畅,等. 长时间近冰点温度贮藏对杏果实货架品质的影响[J]. 食品科学,2020,41(1):223-230.

Liu Bangdi, Fan Xinguang, Shu Chang, et al. Effect of near freezing temperature storage on the shelf quality of apricots after long time cold storage[J]. Food Science, 2020, 41(1): 223-230. (in Chinese with English abstract)

[27] 张娜,阎瑞香,关文强,等. LED单色红光对西兰花采后黄化抑制效果的影响[J]. 光谱学与光谱分析,2016,36(4):955-959.

Zhang Na, Yan Ruixiang, Guan Wenqiang, et al. The effect of LED monochromatic red light on the inhibition of postharvest yellowing of broccoli[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 955-959. (in Chinese with English abstract)

[28] Erdberga I, Alsina I, Dubova L, et al. Changes in the biochemical composition of tomato fruit under the influence of illumination quality[J]. Key Engineering Materials, 2020, 850: 172-178.

[29] Huang J Y, Xu F, Zhou W. Effect of led irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture, 2018, 98(14): 5486-5493.

[30] 祁文彩,吴宁,张亮,等. 香蕉采后生理及贮藏保鲜研究进展[J]. 河南师范大学学报:自然科学版,2019,47(3):99-105.

Qi Wencai, Wu Ning, Zhang Liang, et al. Research progress of physiology, storage and preservation for postharvest banana fruit[J]. Journal of Henan Normal University: Natural Science Edition, 2019, 47(3): 99-105. (in Chinese with English abstract)

[31] Dhakal R, Baek K. Short period irradiation of single blue wavelength light extends the storage period of mature green tomatoes[J]. Postharvest Biology and Technology, 2014, 90: 73-77.

[32] 雷静,张娜,阎瑞香,等. LED红蓝弱光照射保持樱桃番茄冷库贮藏品质[J]. 农业工程学报,2016,32(9):248-254.

Lei Jing, Zhang Na, Yan Ruixiang, et al. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 248-254. (in Chinese with English abstract)

[33] Ritesh W, Sourav C, Prem S, et al. Physicochemical and mechanical properties during storage-cum maturity stages of raw harvested wild banana (, BB)[J]. Journal of Food Measurement and Characterization, 2021, 15: 3336-3349.

[34] 朱孝扬,李雪萍,单伟,等. 香蕉贮运保鲜技术研究进展[J].热带作物学报,2020,41(10):2013-2021.

Zhu Xiaoyang, Li Xueping, Shan Wei, et al. Research progress of technologies in banana fruit preservation and transportation[J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2013-2021. (in Chinese with English abstract)

[35] 贾彩红,徐碧玉,刘菊华,等. 香蕉ASR的特征和采后表达分析[J]. 生物技术通报,2014(1):105-111.

Jia Caihong, Xu Biyu, Liu Juhua, et al. Characteristic and expression analysis of ASR gene from banana[J]. Biotechnology Bulletin, 2014(1): 105-111. (in Chinese with English abstract)

[36] 王文萍. 香蕉精准催熟技术研究[D]. 广州:华南农业大学,2018.

Wang Wenping. Studies on Precise Ripening Technology of Banana Fruit[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese with English abstract)

[37] 项蕾蕾,李丹,孙雪丽,等. LED补光对香蕉组培苗增殖和生理生化指标的影响[J]. 应用与环境生物学报,2020,26(3):590-596.

Xiang Leilei, Li Dan, Sun Xueli, et al. Effects of LED supplementation on proliferation, and physiological and biochemical indices of tissue-cultured banana plantlets[J]. China Journal of Applied and Environmental Biology, 2020, 26(3): 590-596. (in Chinese with English abstract)

[38] 王志华,王文辉,姜云斌,等. 不同采收期对苹果常温贮藏品质和衰老的影响[J]. 农业工程学报,2020,36(7):300-306.

Wang Zhihua, Wang Wenhui, Jiang Yunbin, et al. Effects of different harvesting periods on the storage quality and senescence of apple at room temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 300-306. (in Chinese with English abstract)

[39] 刘袆帆,杜卉妍,钟玉鸣,等. 基于香蕉、粉蕉成熟过程中硬度变化建立成熟度随机森林模型[J]. 广东农业科学,2020,47(6):106-115.

Liu Huifan, Du Huiyan, Zhong Yuming, et al. Construction of maturity random forest models based on the changes of fruit firmness of musa AAA group banana and musa ABB group banana during ripening[J]. Guangdong Agricultural Sciences, 2020, 47(6): 106-115. (in Chinese with English abstract)

[40] Fan X, Jiang W, Gong H, et al. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature[J]. Food Chemistry, 2019, 300 (125194): 1-8.

[41] 舒畅,刘帮迪,张万立,等. 近冰温冷藏对‘金冠’苹果贮藏品质的影响[J]. 食品科学,2020,41(1):244-251.

Shu Chang, Liu Bangdi, Zhang Wanli, et al. Improving postharvest quality of apple(×. cv. Golden Delicious) fruit by storage at near freezing temperature[J]. Food Science, 2020, 41(1): 244-251. (in Chinese with English abstract)

[42] 黎金鑫,解新方,张洁,等. 光照处理在草莓采后贮藏保鲜中应用研究进展[J]. 北方园艺,2019(21):130-135.

Li Jinxin, Xie Xinfang, Zhang Jie, et al. Research progress on the effect of light treatment on strawberry postharvest quality[J]. Northern Horticulture, 2019(21): 130-135. (in Chinese with English abstract)

[43] Toledo M, Ueda Y, Imahori Y, et al. L-ascorbic acid metabolism in spinach (L.) during postharvest storage in light and dark[J]. Postharvest Biology & Technology, 2003, 28(1): 47-57.

[44] Carmen O, Susana S, Echávarri J F, et al. Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower[J]. LWT - Food Science and Technology, 2008, 42(1): 402-411.

Effects of LED light on the ripening regulation of green mature banana during storage and transportation

Liu Bangdi1,2, Zhang Yali1,2,3, Ke Zehua1,2,3, Sun Jing1,2※, Zhou Xinqun1,2, Sun Jie1,2

(1.,,100125,; 2.-,,100121,;3.,,056038,)

The purpose of this research was to clarify the effects of monochromatic lights with different fixed bands on the post-ripeness regulation in typical respiration fruits. Specifically, a systematic investigation was made on the effects of red, orange, yellow, green, blue, and purple LED lights on delaying and accelerating low maturity bananas ripening during simulated storage and transportation at room temperature (20±0.7 ℃). The low maturity of bananas ripening and quality changes were observed under different colors of LED lighting treatment. The results showed that the >440-505 nm blue and 400-440 nm violet LED light greatly contributed to inhibiting the intensity respiratory of banana and release quantity of ethylene. Two colors of LED light were utilized to effectively delay the shelf storage time of banana for 2 days, while decreasing the color turn and decomposition of cellulose and starch. Subsequently, the final firmness of bananas under the blue and purple lighting treatment after 8 days was 2.5 and 0.1 N higher than the CK group. In addition, the total sugars content of bananas in the blue lighting group was 51.71% of CK. Hence, better preservation was achieved under the blue and purple LED lighting treatment, where the bananas post-ripening was inhibited to prolong the freshness preservation period. The >640-700 nm red and >605-640 nm orange LED lighting treatments were utilized to effectively promote 2 days earlier on bananas respiration and ethylene peak. In addition, the red light was used to increase the respiratory peak by 24.20% and the ethylene release peak by 23.97%, compared with the CK group. More importantly, the peel color of bananas turned more outstandingly under red and orange light, and the total color difference (Δ) reached 94.70 and 83.25 at full ripeness. The red-orange light was also employed to stimulate the decomposition of starch and cellulose, thus speeding up the accumulation of bananas soluble sugar and softening. Therefore, it was found that both red and orange LED lights were selected to effectively accelerate the ripening of bananas. Among them, the orange light was used as an accurate of ripening, due to its intensity less than the red light. Additionally, the bananas exposed to yellow and green LED lighting showed premature rotting and post-ripening disorder. Moreover, the banana peels rotted seriously after 4 days, but the color differences (Δ) of peels were 40.35 and 46.23 less than those of the CK group. Particularly, the>565-605 nm yellow and >505-565 nm green light also prevented the rapid decline of banana firmness, but accelerated the cellulose decomposition, compared with the CK group. At the same time, the pectin contents in the yellow and green light group were lower than those in CK. The changes of cellulose, pectin, and hardness varied in the groups. A comprehensive analysis was performed on the texture, sugar content, and respiration of bananas. It was found that the six LED light colors treatments were used to delay ripening, promote ripening and disturb ripening. Correspondingly, the red light was selected to promote banana ripening faster, the orange light to promote banana ripening slower, the blue light to inhibit post-ripening and delayed senescence better than purple light, the yellow and green light to disrupt the normal post-ripening of banana. In conclusion, monochromatic LED lighting can be widely expected to serve as physical preservation to delay or accelerate ripeness in the process of storage and transportation of bananas. This finding can provide a theoretical basis for the ripening regulation on more respiration fruits and vegetables.

light; storage; transportation; LED; green mature banana; ripening regulation; preservation; ripening

刘帮迪,张雅丽,柯泽华,等. LED光照对青熟香蕉贮运中后熟调控的影响[J]. 农业工程学报,2021,37(20):295-302.doi:10.11975/j.issn.1002-6819.2021.20.033 http://www.tcsae.org

Liu Bangdi, Zhang Yali, Ke Zehua, et al. Effects of LED light on the ripening regulation of green mature banana during storage and transportation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 295-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.20.033 http://www.tcsae.org

2021-05-19

2021-08-02

农业部农产品产后处理重点实验室开放课题项目(KLAPPH2019-03);国家重点研发计划项目(2017YFD0401305)

刘帮迪,博士,工程师,研究方向为果蔬贮藏与保鲜,果蔬冷冻技术,农产品产后品质调控。Email:328442307@qq.com

孙静,博士,正高级工程师,研究方向为农产品产后贮藏加工,农产品仓储冷链物流体系建设。Email:cynthiasj@163.com

10.11975/j.issn.1002-6819.2021.20.033

S531

A

1002-6819(2021)-20-0295-08

猜你喜欢
果胶紫光乙烯
不同乙烯产品外送方案对乙烯装置能耗和经济性的影响
果胶的结构、提取及应用研究进展*
改性果胶的研究及应用
盐酸法和磷酸氢二钠法提取甘薯渣果胶效果的比较
从五种天然色素提取废渣中分离果胶的初步研究
紫光展锐携手西安交大:共建AI联合实验室
120万吨级乙烯压缩机打破国外垄断
“紫光”商标纠纷案终审判决
争做世界级高科技企业
半生不熟的香蕉