卢园 陈海南 杨舟 薛惠天 王兰兰 孙梦龙 彭亮
〔摘要〕 目的 觀察小鱼际滚法干预新西兰白兔骨骼肌急性钝挫伤组织机化期的生长/分化因子8 (growth differentiation factor 8, GDF-8)表达、受体活化型通路限制性蛋白Smad2、Smad3的表达水平以及Smad2的磷酸化水平(p-Smad2),探究小鱼际滚法干预骨骼肌急性钝挫伤组织机化期的可能作用机制。方法 采用随机数字表法将18只兔分为空白组、模型组、滚法组,每组6只。采用自制重力锤打击装置制备新西兰白兔骨骼肌急性钝挫伤模型,于造模后第5天进行干预,空白组和模型组进行捆绑,滚法组由经过专门培训的专员进行小鱼际滚法干预,皆为上午下午各1次,5 min/次,共3 d。干预结束后,观察苏木精-伊红(hematoxylin-eosin, HE)染色组织形态学变化,采用蛋白质印迹法(Western blot, WB)检测GDF-8、p-Smad2、Smad2/3蛋白相对表达量。结果 HE染色结果显示,模型组的股四头肌肌束间不规则结缔样组织明显增多,肌纤维排列紊乱,数量减少、变小,滚法组存在少量结缔组织,肌束排列紧密,肌纤维排列较为整齐,大小近似。WB检测显示,与空白组比较,模型组和滚法组的GDF-8表达都升高(P<0.01),滚法组表达水平低于模型组(P<0.01);Smad2/3在各组的蛋白表达一致(P>0.05);与空白组比较,模型组的p-Smad2蛋白表达、p-Smad2/Smad2/3的灰度比值都升高(P<0.01),滚法组均显著低于模型组(P<0.01)。结论 小鱼际滚法在兔急性钝挫伤组织机化期可能通过抑制GDF-8/Smad2信号通路达到延缓组织纤维化、促进肌纤维生长以及加强骨骼肌修复的目的。
〔关键词〕 骨骼肌损伤;钝挫伤;推拿;小鱼际滚法;GDF-8;Smad2
〔中图分类号〕R244.1 〔文献标志码〕A 〔文章编号〕doi:10.3969/j.issn.1674-070X.2021.09.006
The Effects of Hypothenar Rolling Method on GDF-8/Smad2 in Tissue Mechanization
Stage of Acute Blunt Rubbing Injury in Skeletal Muscle of Rabbit
LU Yuan, CHEN Hainan, YANG Zhou, XUE Huitian, WANG Lanlan, SUN Menglong, PENG Liang*
(College of Acupuncture and Massage, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China)
〔Abstract〕 Objective To investigate the effects of hypothenar rolling manipulation on the expression of growth differentiation factor 8 (GDF-8), receptor activated pathway limiting protein Smad2, Smad3, phosphorylation of Smad2 (p-Smad2) in skeletal muscle of New Zealand white rabbits during the tissue mechanization stage of acute blunt muscle contusion, and to explore the possible mechanism of hypothenar rolling in the intervention of skeletal muscle acute blunt trauma tissue during the tissue mechanization stage. Methods 18 rabbits randomly divided into blank group, model group, manipulation group according to random number table method, with 6 rabbits in each group. All rabbits except control group induced skeletal muscle acute blunt contusion model of New Zealand white rabbits by manufacture of self-made gravity hammer striking device. Different intervention methods were performed after 5th day. Blank group and model group were bundled, manipulation group was intervened by the specially trained specialists in the hypothenar rolling method, once in the morning and afternoon, 5 minutes/time for 3 days. After the intervention, hematoxylin-eosin (HE) staining was observed, and the relative protein expression levels of GDF-8, p-Smad2 and Smad2/3 were detected by Western blot (WB). Rseults HE staining results showed that the irregular connective tissue between the muscle bundles of the quadriceps femoris in the model group was significantly increased, and the muscle fibers were disordered, and the number was reduced or decreased. In the manipulation group, there was a small amount of connective tissue, the muscle bundles were closely arranged, and the muscle fibers were orderly and similar in size. WB assay showed that compared with blank group, GDF-8 expression was increased in both model group and manipulation group (P<0.01), while the expression level in manipulation group was lower than that in model group (P<0.01). The protein expression of Smad2/3 was consistent in all groups (P>0.05). Compared with blank group, p-Smad2 protein expression and p-Smad2/Smad2/3 gray ratio in model group were increased (P<0.01), while manipulation group was significantly lower than model group (P<0.01). Conclusion The hypothenar rolling method may delay tissue fibrosis, promote muscle fiber growth and enhance skeletal muscle repair by inhibiting GDF-8/Smad2 signaling pathway during the tissue mechanization stage of acute blunt contusion in rabbits.
〔Keywords〕 muscle injury; blunt injury; Tuina; hypothenar rolling manipulation; GDF-8; Smad2
骨骼肌大约占人体质量的40%,为运动系统提供动力。骨骼肌急性损伤后一般需经历炎症期、组织机化期(肌卫星细胞增殖分化期)和瘢痕期。骨骼肌修复阶段防止其过度纤维化是损伤后康复的关键,成肌细胞增殖分化期在其中起到重要作用[1-3]。生长/分化因子8(growth differentiation factor 8, GDF-8)又称为肌肉生长抑制素(myostatin, MSTN),是转化生长因子-β(transforming growth factor-β, TGF-β)超家族中重要成员,由骨骼肌分泌,在肌肉中特异性表达,是肌肉生长的重要负性调节因子。TGF-β成员(TGF-β1和MSTN)通过不同的途径[4-6]激活Smad家族蛋白中受体活化型通路限制性蛋白Smad2和Smad3进而发挥作用。研究[7-10]证明,推拿按摩干预急性钝挫伤后的实验动物,可以有效抑制TGF-β、Myostatin-Smad2/3等通路,减少Smad2/3、GDF-8等表达,降低其活性,以进一步达到帮助骨骼肌恢复、防止其过度纤维化的目的。艾珏萍等[11]认为,小鱼际滚法可以减少炎性细胞,促进修复受损骨骼肌。本研究利用新西兰白兔骨骼肌急性钝挫伤模型,观察小鱼际滚法对兔急性钝挫伤后组织机化期的影响,探讨其作用机制是否与GDF-8/Smad2/3通路相关。
1 材料与方法
1.1 实验动物与分组
选取湖南中医药研究院实验动物中心提供的健康清洁级成年新西兰白兔18只(3月龄、雌雄各半),单笼饲养,饲养环境为温度20~25 ℃,湿度50%~70%。根据随机数字表法将其编号,并分为空白组、模型组、滚法组,每组6只。
1.2 主要试剂与仪器
脱脂奶粉(中国北京普利莱基因技术有限公司,P1622);RIPA裂解液(中国上海碧云天生物技术有限公司,P0013B);显影液(中国上海佳信科技有限公司,BW-61);定影液(中国上海佳信科技有限公司,BW-62);Smad2/3抗體(英国abcam公司,ab63672);p-Smad2抗体(英国abcam公司,ab188334);GDF-8抗体(美国proteintech公司,19142-1-AP);GAPDH抗体(美国proteintech公司,10494-1-AP)。
显微镜(麦克奥迪实业集团有限公司,BA210T);电子天平(美国双杰兄弟有限公司,JJ224BC);台式冷冻离心机(中国湖南湘仪实验室仪器开发有限公司,H1650R);切片机(浙江金华益迪试验器材,YD-315);电泳仪(中国北京六一生物科技有限公司)。
1.3 模型制备
参考并改进侯懿烜等[7]的方法,采用自制重力锤打击装置制备骨骼肌急性钝挫伤新西兰白兔模型。重力锤重0.85 kg,打击面为直径1.5 cm的平滑木制圆柱,不锈钢导向管中空,长30 cm,直径1.8 cm。方法:新西兰白兔适应性喂养7 d后,将其右后肢内侧剃毛,腹面朝上绑于试验台,充分暴露实验兔右后肢股四头肌及其相邻肌肉,打击点为股四头肌肌腹中段,以打击点中点为圆心、1 cm为直径画圈标记。操作前于打击部位覆盖纱布防止皮肤局部受损,操作由专人控制,将重力锤沿导向管自由下落,同一部位连续打击6次,高度40 cm,打击面积约为1.77 cm2,动能3.33 J,冲量2.38 Ns。另有实验人员用双手拇食指固定实验兔股四头肌上下端防止其挣扎造成打击点移位。造模成功标准:打击部位皮肤出现明显肿胀及淤血,无皮肤受损及骨折,触碰实验兔时有躲避反射。
1.4 干预方法与标本取材
据本团队前期探索[12],造模后第5天实验兔进入组织机化期。空白组和模型组于造模后第5天开始捆绑,滚法组于造模后第5天由专人进行小鱼际滚法操作,上午下午各1次,5 min/次,共3 d。滚法操作参考《推拿手法学》[13],干预前由专人(针灸推拿学专业研究生)先在ZTC-II 按摩手法测试仪训练并达到标准滚法参数:前滚后滚着力轻重比3∶1,峰值压力0.5 kg重力,操作频率40 次/min。造模后第8天进行标本取材,采取心内注射空气处死各组兔后取样,观察实验兔后肢右股四头肌肌腹中段,选取其损伤最严重处的病灶组织,大小约为1 cm×1 cm×0.5 cm。
1.5 形态学检测
各组兔右侧后肢股四头肌标本先60 ℃烤片12 h,再用切片机切片,将其置于二甲苯中3次、20 min/次,再依次进行梯度酒精脱水,每级放置10 min,蒸馏水浸洗5 min后进行苏木精-伊红(hematoxylin-eosin, HE)染色,最后置于二甲苯2次、10 min/次,中性树胶封片、显微镜观察、采集图像。
1.6 蛋白质印迹法(Western blot,WB)检测
首先对标本进行蛋白提取,电子天平称取0.030 g组织,剪碎、研磨,冰上裂解10 min,4 ℃,将上清液移入1.5 mL离心管中离心(12 000 r/min,13.5 cm)15 min。制胶并计算配置上样蛋白以及buffer混合液等放入冰盒中速冷备用。电泳与转膜:电泳恒定电压78 V,时间为150 min,待溴酚蓝电泳至胶底部时终止电泳。转膜300 mA恒定电流,p-Smad2、GDF-8约80 min,Smad2/3、GAPDH约60 min。转膜完毕后,将膜取出放入1×PBST中洗1次。封闭:1×PBST配制5%脱脂奶粉,将膜浸入后,室温放置120 min,4 ℃过夜。一抗孵育:用1×PBST将一抗按照相应比例稀释,Smad2/3(1∶1 000)、p-Smad2(1∶3 000)、GDF-8(1∶750)、GAPDH(1∶3 000)孵育,室温放置90 min,孵育结束,1×PBST洗3次,10 min/次。二抗孵育:1×PBST稀释HRP标记的二抗(HRP goat anti-mouse IgG 1∶5 000,HRP goat anti-rabbit IgG 1∶6 000)将稀释后的二抗与膜共同室温孵育60 min。孵育结束,1×PBST洗3次,10 min/次。ECL显色曝光:使用ECL化学发光液与膜孵育1 min,用滤纸吸尽液体,用塑封膜将膜包裹杂交膜,在暗盒内与X胶片曝光5~120 min;显影冲洗。
1.7 统计学方法
本研究所得数据以“x±s”表示,采用SPSS 26.0统计学软件进行数据分析。服从正态分布采用单因素方差分析,组间数据方差齐时,两两比较采用Bonferroni检验,方差不齐时采用Games-Howel检验。均以P<0.05表示差异有统计学意义。
2 结果
2.1 各组兔形态学结果比较
空白组的兔骨骼肌HE染色图中见肌纤维、肌束形态完整,且有少量结缔组织,肌细胞间排列整齐、大小形态近似;模型组见肌束间隔增大,不规则结缔组织明显增多,存在少量水肿,无出血及炎症,肌纤维排列紊乱,滚法组见肌束间隔小于模型组,产生结缔组织数量少,无水肿、出血及炎症,肌肉细胞排列较为规则,大小形状相似。见图1。
2.2 各组兔GDF-8、p-Smad2、Smad2/3等的表达比较
与空白组比较,模型组和滚法组的GDF-8表达均升高(P<0.01),滚法组表达水平低于模型组(P<0.01);Smad2/3在各组的蛋白表达一致(P>0.05);与空白组比较,模型组的p-Smad2蛋白表达、p-Smad2/Smad2/3的灰度比值均升高(P<0.01),滚法组显著低于模型组(P<0.01),p-Smad2/Smad2/3的灰度比值均值分别为:17.67%、62.67%、33.67%。见图2、表1。
3 讨论
骨骼肌急性钝挫伤后可进行自然的修复,一般表现由水肿、炎症、出血、肌纤维坏死、成纤维细胞及肌卫星细胞增殖分化、肌管和血管再生、结缔组织增多、肉芽组织及瘢痕组织形成等。钝挫伤的骨骼肌以瘢痕修复的方式愈合,肌肉严重或广泛受损的情况下,成纤维细胞过度增生,瘢痕组织形成稠密,严重影响肌肉组织再生,导致骨骼肌收缩功能严重减低,极大影响患者的日常生活。肌形成和纤维瘢痕形成之间的平衡是修复能否完全的关键,在纤维瘢痕形成快于肌形成的情況下会造成修复不全[8]。因此,促进肌细胞再生和抑制延缓细胞外纤维瘢痕的形成是促进骨骼肌钝挫伤后修复的重要研究方向。
GDF-8是TGF-β超家族中重要一员,其在成熟个体的骨骼肌生长中起抑制作用,是骨骼肌质量的负调节因子,与成肌细胞和卫星细胞的增殖分化密切相关[14-18]。GDF-8强烈抑制骨骼肌发育的特点广泛存在于人和哺乳动物当中[1-2, 19-21]。多项研究[2, 20, 22-23]表明,肌生长抑制素表达减少或活性降低皆可使肌纤维增殖或肥大,增加骨骼肌的质量。Abo等[24]研究结果表明,肌肉生长抑制素缺乏的小鼠肌细胞增生肥大,骨骼肌质量增加,而过表达的小鼠肌纤维数量减少、变小,肌肉质量比正常野生型小鼠轻18%~24%。Smad蛋白家族由9种蛋白组成,其中Smad2、Smad3蛋白是受体活化型通路限制性蛋白。Smad2/3在细胞内直接由TGF-β激活,被磷酸化后与Smad4形成异聚体转位至细胞核进行相关的转录翻译[25]。Trendelenburg、Welle等[17, 26-28]认为,降低p-Smad2/3的表达可以促进肌肉细胞中的蛋白质合成。Cortez等[27]研究发现,p-Smad2蛋白表达增加会减少肌肉质量。减少p-Smad2表达、降低Smad2蛋白的活性成为骨骼肌修复的重要方向之一。肌肉大小由肌纤维数量和大小共同决定,数量在发育时被设定,大小则随生命过程发生适应性改变,GDF-8在这两方面均发挥作用。GDF-8/Smad2/3信号通路在肌肉发育的负调节中起重要作用[15]。抑制肌生长抑制素可以减少Smad2的磷酸化,同时促进肌肉中蛋白的合成[28]。
本研究的结果显示,3组中GDF-8的表达依次为模型组>滚法组>空白组,可以看出急性钝挫伤后自然恢复的兔肌肉生长抑制素呈现高表达。在HE染色中,肌纤维排列松散,数量较少、变小,结缔样组织增多,滚法干预的组别虽然存在结缔组织但较少,肌细胞和肌束间排列较为整齐紧密,大小近似,整体形态与正常组相似。各组的Smad2/3蛋白总量并未见明显的改变,但滚法干预组的Smad2的活性却远远低于模型组(P<0.01),p-Smad2/Smad2/3的比值也远低于模型组(P<0.01),可以认为小鱼际滚法干预兔骨骼肌急性钝挫伤后组织机化期可以降低GDF-8的表达,并且通过改变Smad2的蛋白结构以降低损伤后组织机化期p-Smad2的表达水平及Smad2的活性,即可通过抑制GDF-8/Smad2通路以达到延缓组织纤维化,促进骨骼肌细胞生长、肌肉修复的目的。但在分子层面需要更进一步的研究探索。
参考文献
[1] MCPHERRON A C,LAWLER A M,LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387(6628): 83-90.
[2] MCPHERRON A C, LEE S J. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1997, 94(23): 12457-12461.
[3] LEE S J. Regulation of muscle mass by myostatin[J]. Annual Review of Cell and Developmental Biology, 2004, 20: 61-86.
[4] SARTOR R, MILAN G, PATRON M, et al. Smad2 and 3 transcription factors control muscle mass in adulthood[J]. Cell Physiology, 2009, 296(6): 1248-1257.
[5] BURKS T N, COHN R D. Role of TGF-β signaling in inheritedand acquired myopathies[J]. Burks Cohn Skeletal Muscle,2011, 1: 19.
[6] LIU D, BLACK B L, DERYNCK R. TGF-β inhibits musclediff?
erentiation through functional repression of myogenictranscription factors by Smad3[J]. Genes & Development, 2001, 15: 2950-2966.
[7] 侯懿烜,柳满然,余 敏,等.按摩促进兔股四头肌损伤修复的体内研究[J].中国修复重建外科杂志,2012,26(3):346-351.
[8] 王荣国.电针促进家兔骨骼肌钝器伤后再生的作用和机制研究[D].北京:北京中医药大学,2012.
[9] 庞 赓,曾文赟,黄 慧,等.推拿联合电针疗法对大鼠急性骨骼肌钝挫伤后纤维化的影响[J].时珍国医国药,2020,31(9):2274-2277.
[10] 杨之雪,朱正威,贺 舟,等.推拿联合跑台训练对急性骨骼肌损伤大鼠肌蛋白代谢相关因子的影响[J].中华物理医学与康复杂志,2020,42(5):385-391.
[11] 艾珏萍,罗 婷,吴安林,等.小鱼际滚法对组织机化期骨骼肌钝性损伤家兔Fibronectin-1与CTGF-1表达的影响[J].湖南中医药大学学报,2020,40(2):204-208.
[12] 吴安林,艾珏萍,谢秀惠,等.兔急性骨骼肌损伤模型的建立及分期确定[J].山西中医药大学学报,2020,21(4):257-259.
[13] 赵 毅,季 远.推拿手法学[M].北京:中国中医药出版社,2016: 200.
[14] THOMAS M, LANGLEY B, BERRY C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation[J]. Journal of Biological Chemistry,2000, 275(51): 40235-40243.
[15] LANGLEY B, THOMAS M, BISHOP A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J]. Journal of Biological Chemistry, 2002, 277(51): 49831-49840.
[16] MCCROSKERY S, THOMAS M, MAXWELL L, et al. Myostatin negatively regulates satellite cell activation and self-renewal[J].Journal of Cell Biology, 2003, 162(6):1135-1147.
[17] TRENDELENBURG A U, MEYER A, ROHNER D, et al. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast
differentiation and myotube size[J]. Cell Physiology, 2009, 296(6): 1258-1270.
[18] BEYER T A, NARIMATSU M, WEISS A, et al. The TGF-β superfamily in stem cell biology and early mammalian embryonic development[J]. Biochimica et Biophysica Acta, 2013, 1830(2): 2268-2279.
[19] GROBET L, MARTIN L J, PONCELET D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle[J]. Nature Genetics, 1997, 17(1): 71-74.
[20] SCHUELKE M, WAGNER K R, STOLZ L E, et al. Myostatin mutation associated with gross muscle hypertrophy in a child[J]. New England Journal of Medicine, 2004, 350(26): 2682-2688.
[21] CLOP A, MARCQ F, TAKEDA H, et al.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nature Genetics, 2006, 38(7):813-818.
[22] KAMBADUR R, SHARMA M, SMITH T P, et al. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Research, 1997, 7(9): 910-916.
[23] MOSHER D S, QUIGNON P, BUSTAMANTE C D, et al.A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs[J]. PLoS Genetics, 2007, 3(5): e79.
[24] ABO T, IIDA R H, KANEKO S, et al. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β-adrenergic agonist[J]. Cell Biochemistry and Function, 2012, 30(8): 671-676.
[25] LIN X, CHEN Y, MENG A, et al. Termination of TGF-beta superfamily signaling through SMAD dephosphorylation--a functional genomic view[J]. Journal of Genetics and Genomics, 2007, 34(1): 1-9.
[26] WELLE S L. Myostatin and muscle fiber size. Focus on "Smad2 and 3 transcription factors control muscle mass in adulthood" and "Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size"[J]. Cell Physiology, 2009, 296(6): 1245-1247.
[27] CORTEZ-TOLEDO O, SCHNAIR C, SANGNGERN P, et al.Nur77 deletion impairs muscle growth during developmental
myogenesis and muscle regeneration in mice[J]. Plos One, 2017, 12(2): e0171268.
[28] CHANG F, FANG R, WANG M, et al. The transgenic expression of human follistatin-344 increases skeletal muscle mass in pigs[J]. Transgenic Research, 2017, 26(1): 25-36.