快速型黄羽肉鸡饲料利用效率性状的基因组选择研究

2021-08-23 07:10杜永旺陈智武赵桂苹郑麦青
畜牧兽医学报 2021年8期
关键词:黄羽遗传力利用效率

李 森,杜永旺,文 杰,黄 超,陈智武,赵桂苹,郑麦青*

(1.中国农业科学院北京畜牧兽医研究所,北京 100193;2. 广西金陵农牧集团有限公司,南宁 530049)

黄羽肉鸡每年出栏量约40亿只,其中快速型黄羽肉鸡占比约1/3[1],随着我国居民餐饮习惯的改变和活禽交易市场逐步取消,对快速型黄羽肉鸡的需求还将大幅提升。在肉鸡生产中,饲料成本占总生产成本的70%以上[2]。近年来,受国际贸易冲突、耕地面积减少以及新冠疫情的影响,饲料原料价格大幅上涨,成为我国肉鸡产业发展的重要影响因素,如何提高畜禽饲料利用效率,将成为肉鸡,特别是快速型黄羽肉鸡遗传改良的重要目标之一。在家禽中,常用饲料转化率(feed conversion rate, FCR)评估饲料利用效率[3],之后研究者又提出了剩余采食量(residual feed intake, RFI)、剩余增长体重(residual body weight gain, RG)以及剩余采食和增长体重(residual intake and body weight gain, RIG)等新指标[4-5],需要根据不同品种的选育目标选择合适的饲料利用效率性状制定育种方案。

遗传选育是改进肉鸡饲料利用效率的主要方式,随着分子遗传学和计算机技术的发展,一种利用覆盖全基因组高密度分子标记选择育种的方法被广泛应用到不同畜禽的遗传改良中[6-8],这种方法就是基因组选择(genomic selection)。基因组选择主要优点在于可实现早期选择,不依赖系谱和表型信息,能够显著提高估计育种值的准确性。安伟捷、科宝、海兰等国际家禽育种公司已经全面采用基因组选择技术,并取得了显著的成效[9-11]。目前,国内已经建立了奶牛、肉牛、猪的基因组选择技术平台,肉鸡和蛋鸡基因组选择技术也已经开始应用[12-14]。

基因组选择方法主要分为两类:第一类是利用基因组遗传信息构建个体间亲缘关系矩阵,然后采用线性混合模型估计基因组估计育种值(genomic estimated breeding value, GEBV)的直接法,如基因组最佳线性无偏预测法(genomic best linear unbiased prediction, GBLUP)和一步法(single-step genomic best linear unbiased prediction, SSGBLUP);第二类是基于估计等位基因效应来计算基因组估计育种值的间接法,如最小二乘法和贝叶斯方法[15-17]。间接法需要花费大量的时间对参数进行求解,计算效率低,在实际育种工作中实施较少。因此,运算效率较高的直接法被商业化育种广泛应用。但是,受到不同目标群体结构和性状遗传力等因素的影响,不同方法预测的准确性存在差异。Manzanilla-Pech等[18]采用BLUP、GBLUP、SSGBLUP和一步法岭回归(single-step ridge-regression BLUP, SSRR-BLUP)方法预测了奶牛在不同哺乳期采食量性状估计育种值的准确性,研究显示,SSGBLUP和SSRR-BLUP的准确性比传统BLUP的准确性显著提高。Alemu等[19]利用SSGBLUP方法预测两个蛋鸡群体的生存时间,结果优于BLUP方法。彭潇等[20]采用不同基因组选择方法预测猪达100 kg日龄、达100 kg背膘厚和乳头数的准确性,结果显示,GBLUP方法对乳头数的预测准确性优于SSGBLUP方法,达100 kg日龄和达100 kg背膘厚采用SSGBLUP方法结果更优。

快速型黄羽肉鸡E系是广西金陵花鸡三系配套中的终端父系,具有生长速度快、耗料少和肉质鲜美的特点。饲料报酬和体增重是快速型黄羽肉鸡最主要的选育指标。应用基因组选择技术进行遗传选育,有望提高复杂经济性状的遗传进展,因此需要对目标品种主要性状的最佳基因组选择方法进行研究。本研究将在估计饲料利用效率等性状的遗传参数基础上,进一步比较传统BLUP、GBLUP和SSGBLUP 3种 方法对育种值估计的准确性,拟筛选出预测性能更佳的基因组选择方法,为制定合理的快速型黄羽肉鸡饲料利用效率性状基因组选择方案提供必要参考。

1 材料与方法

1.1 试验群体

本试验中所使用的群体来自中国广西金陵农牧集团有限公司培育的快速型黄羽肉鸡E系。在0~6周龄(0~42 d)为肉鸡育雏阶段,采用群体饲养。从7周龄(43 d)开始转为单笼饲养,使用独立的饲喂器和饮水器,试验期间所有鸡群均采用自由采食的方式,按照正常程序免疫和饲养管理。测定42、56日龄体重和在此期间的总采食量。本研究共使用包括2个世代1 923只具有表型记录的个体,其中公鸡1 199只,母鸡724只,均具有完整的系谱信息。

1.2 饲料利用效率性状的计算模型

本试验对8个性状进行研究,生长性状分别为42日龄体重(BW42D),56日龄体重(BW56D),日均采食量(ADFI): (42~56日龄总采食量)/14,日均增重(ADG): (BW56D-BW42D)/14。饲料利用效率性状分别为饲料转化率(FCR)、剩余采食量(RFI)、剩余增长体重(RG)以及剩余采食和增长体重(RIG)。FCR、RFI、RG、RIG的计算方法如下:

ADFI = μ + hatch + sex + β1MWT + β2ADG + e1(RFI)

ADG = μ + hatch + sex + β3MWT + β4ADFI + e2(RG)

RFI和RG的计算模型中,μ是回归方程的截距,hatch和sex为固定效应,分别代表孵化批次和性别,MWT是试验中期代谢体重,MWT=((BW42D+BW56D)/2)0.75,β1和β2分别是MWT、ADG对ADFI的偏回归系数,β3和β4分别是MWT、ADFI对ADG的偏回归系数,e1和e2代表残差值,即对应RFI和RG。RIG是将RFI和RG标准化后组成的线性组合。各个性状的描述性统计结果如表1所示。

1.3 基因组SNPs数据的获得与处理

试验群体在56日龄时翅下静脉采血用于基因组DNA提取,利用鸡Illumina SNP 55K芯片[21]进行基因型检测。SNP芯片检测结果共得到44 561个SNPs位点,使用PLINK(V1.9)[22]软件对数据进行质量控制处理,质量控制标准为:1)检出率大于(call rate) 90%以上;2)最小等位基因频率(MAF)大于5%;3)位点缺失率(GENO)小于5%;4)哈迪温伯格平衡检验(HWE)为1×10-6。缺失的SNP使用Beagle 5.0软件[23]进行填充,最终保留37 177个SNPs位点。

1.4 统计模型

统计模型包括基于系谱的BLUP、GBLUP和SSGBLUP,3种方法的数学模型相同:

y=Xb+Zα+e

其中,y是表型值向量,X和Z是固定效应和加性遗传效应的关联矩阵,b是固定效应向量,本研究中固定效应分别为孵化批次和性别,α是随机加性遗传效应向量,e是随机残差向量。在BLUP方法中α服从正态分布α~N(0,Aσ2α)。GBLUP方法将基于系谱的亲缘关系矩阵(A矩阵)替换为全基因组标记信息构建的亲缘关系矩阵(G矩阵)。SSGBLUP方法将G矩阵和A矩阵整合组成新的关系矩阵H矩阵,H矩阵的构造如下:

H=

表1 各性状的描述统计

式中,下标1和2分别表示无基因型信息和具有基因型信息个体。VanRaden[24]在构建H矩阵时,对G矩阵进行了加权,采用Gω代替G矩阵,即:

Gω=(1-ω)G+ωA22

ω是基因型和系谱矩阵权重比,表示遗传关系未被SNPs解释的比例,在最初构建时默认设定ω=0.05[25]。由于最佳权重比由品种和性状特异性所决定,为了寻找8个性状的最佳权重比,本研究设定权重比ω从0.05到0.90的梯度变化。

本试验中,方差组分估计利用平均信息约束最大似然法(average information restricted maximum likelihood, AIRESML),遗传相关性分析中采用似然比检验(log likelihood ratio test, LRT)进行显著性分析,所有的计算均基于ASReml v4.1软件[26]。

1.5 交叉验证方法

本研究利用10倍交叉验证来评估不同方法对各个性状估计育种值的准确性,将1 923个个体随机分为10组,其中9组合并为参考群,其余1组为验证群,依次将每一组作为验证群,重复10次,将得到的估计育种值和表型的皮尔逊相关系数(pearson correlation coefficient)作为准确性,最后用10次重复得到的相关系数平均值作为评价准确性的标准。

2 结 果

2.1 快速型黄羽肉鸡饲料报酬性状遗传力估计

利用传统BLUP、GBLUP和SSGBLUP方法估计的各性状方差组分和遗传力结果如表2所示。4个饲料利用效率性状均属于低遗传力,基于BLUP、GBLUP和SSGBLUP方法估计FCR的遗传力为0.13、0.08和0.10,RFI的遗传力为0.20、0.12和0.14,RG的遗传力为0.14、0.09和0.11,RIG的遗传力为0.18、0.11和0.13。其余4个生长性状具有中等偏低的遗传力(0.11~0.35)。BLUP方法估计的遗传方差和遗传力均大于GBLUP和SSGBLUP方法。

2.2 饲料利用效率性状与其他性状间的遗传相关

利用传统BLUP、GBLUP和SSGBLUP 3种方法估计8个性状间的遗传相关性结果如表3所示。3种方法估计的遗传相关结果相似。基于BLUP方法,FCR和RG与ADG为中度水平的遗传相关(-0.36, 0.37),与ADFI为较低水平的遗传相关(0.28, -0.24);RFI与ADG为低水平的遗传负相关(-0.01),与ADFI为较高水平的遗传正相关(0.51);RIG与ADG为较低水平的遗传正相关(0.19),与ADFI为中度水平的遗传负相关(-0.42)。4个饲料利用效率性状间都为高度水平的遗传相关,与BW42D和BW56D的相关性都较低。

表2 各性状遗传力和方差组分估计结果

2.3 SSGBLUP基因组预测最佳权重比分析

针对8个性状,筛选SSGBLUP基因组预测的最佳基因型和系谱矩阵权重比(ω),结果如图1所示。不同性状的最佳权重比不同,对于FCR、RFI、RG和RIG,权重比分别为0.2、0.6、0.4和0.3时估计育种值准确性最高;对于BW42D和BW56D,权重比为0.6时估计育种值准确性最高;对于ADFI和ADG,权重比分别为0.4和0.5时估计育种值的准确性最高。所有性状采用最佳权重比的估计育种值准确性比默认设定ω= 0.05的准确性提升0.30%~5.05%。

表3 饲料利用效率性状与生长性状的遗传相关性

2.4 3种方法基因组预测准确性比较

通过10倍交叉验证比较传统BLUP、GBLUP和SSGBLUP 3种方法对育种值估计的准确性,SSGBLUP方法采用筛选的不同性状最佳权重比进行计算,结果见表4。BLUP、GBLUP和SSGBLUP方法对8个 性状的平均估计育种值准确性分别为0.161、0.163和0.176。SSGBLUP方法对8个性状育种值估计的准确性比BLUP和GBLUP方法分别提高3.85% ~14.43%和5.21%~17.89%。对于RFI、RG、RIG和ADG,GBLUP方法的准确性低于BLUP方法,其他4个性状的准确性均高于BLUP方法。

图1 8个性状SSGBLUP基因组预测最佳权重比筛选结果Fig.1 Results of the SSGBLUP genomic prediction best weighting ratio screening for 8 traits

表4 各性状基于不同方法的交叉验证分析结果

3 讨 论

本研究利用传统BLUP、GBLUP和SSGBLUP方法对黄羽肉鸡群体部分生长和饲料利用效率性状进行遗传力估计,3种方法估计的快速型黄羽肉鸡42和56日龄体重的遗传力在0.22~0.35之间,符合已有研究估计值的范围[27-28]。已有研究显示,FCR、RFI、RG和RIG在家禽中为中高等遗传力[2,29-30],本研究中,4个饲料利用效率性状的遗传力偏低(0.08~0.20),可能是由于本群体与其他研究的品种、饲养方式和遗传背景不同而导致遗传力存在偏差。整体而言,利用传统BLUP方法估计的遗传力均高于GBLUP和SSGBLUP方法估计的遗传力,原因在于传统BLUP方法是使用期望值评价半同胞和全同胞个体间的亲缘关系,过高估计了遗传方差,进而导致遗传力的估计值升高。基因组选择方法是利用基因组标记信息估计个体间亲缘关系,降低了孟德尔抽样误差,排除了更多环境因素造成的亲缘相似性,因而能够得到更加准确的亲缘关系[31-33]。已有研究表明,利用系谱信息和基因组标记信息估计的遗传方差会随着遗传力和群体规模的增大逐渐缩小差异[34]。

本研究发现,FCR与ADG为中度水平的负遗传相关,与ADFI为较低水平的正遗传相关。从遗传角度看,在对FCR进行选择时,能够有效增加群体体重并减少日均采食量。但FCR的选择侧重于提升群体日均增重,会造成选育群体在生长后期体型增大,增加了维持体型所需的能量,而维持体型的费用约占饲料相关支出的60%左右[35],因而FCR不是提高饲料利用效率最理想的指标。RFI将个体的实际采食量分为维持个体所需的能量和剩余部分,主要优势是独立于生产性状,可以比较不同生产水平的个体,准确得到个体间饲料利用效率的差异[36]。但多个研究表明,将RFI作为选择指标可能导致选育群体ADG降低,Willems等[2]在火鸡群体中发现,低RFI组的群体增重比高RFI组低0.14 kg。Cai等[37]利用RFI指标对约克夏猪选育4个世代后发现,与随机对照系相比,低RFI品系群体的RFI和ADFI分别降低了96 和165 g,但同时ADG也下降了33 g。为了改善这种弊端,Berry和Crowley[4]在肉牛中提出新的指标RIG,将RFI和RG两个指标组成线性组合,可以根据选育方向调整两项指标所占的权重,实现兼顾选择饲料利用效率和生长速度两个指标的优势。已有研究表明,以RIG作为选育指标可以有效降低选育群体的日均采食量并提高日均增重[38-39]。现代动物的育种目标要求多样性,以适应不断变化的市场需求,我国快速型黄羽肉鸡现阶段的培育目标需要同时提高体重增长速度和饲料利用效率,本研究群体日均增重和体重的变异系数较大,这表明具有很大提升潜力,RIG与ADFI、ADG都具有良好的遗传相关,因而更适用于评估快速型黄羽肉鸡的饲料利用效率。

黄羽肉鸡育种群体的基础群数量庞大,受到基因分型成本的限制,只有部分个体会进行基因分型。GBLUP方法评估的个体需要具有基因型信息,这就浪费了大量无基因型信息个体的系谱和表型数据。SSGBLUP方法利用基因组信息和系谱信息构建新的关系矩阵[40],可以将群体中无基因型信息个体的系谱和表型记录利用起来,极大地扩充了遗传评估的数据量,有效降低基因分型成本。在SSGBLUP方法中,为了确保SNP能够捕获更多的遗传变异,需要优化基因型和系谱矩阵的权重比。在不同品种和性状中最佳权重比是未知的,已有研究表明,采用最佳权重比能够有效提高SSGBLUP方法对育种值估计的准确性[41-42]。在对猪产仔总数等性状的研究中,比较了权重比从0.1到0.9之间的结果,研究发现,当权重比为0.5时对所有性状的平均准确性最高[43]。在对奶牛产奶量等18个性状的研究中,比较了权重比从0.05到0.4间的结果,研究发现,当权重比在0.15~0.20之间时获得的18个 性状平均准确性最高[44]。本研究结果显示,8个 性状的最佳权重比存在差异,原因可能是基因组信息对不同性状所解释的变异比例不同[45]。采用每个性状的最佳权重比获得的估计育种值准确性均高于默认权重比为0.05时的准确性。综合8个性状的准确性均值,SSGBLUP采用最佳权重比获得的准确性比传统BLUP和GBLUP方法提高9.22%和8.22%。在部分性状中,GBLUP方法的估计育种值准确性低于BLUP方法,其原因可能是GBLUP方法仅利用SNP标记信息,本研究所使用的55K芯片并不能包含整个基因组的变异信息,对基因组中存在的上位和显性效应等其他变异信息无法进行估计,导致GBLUP方法对部分性状估计育种值准确性降低[46-48]。基因组选择在肉鸡育种中的主要优势是提升估计育种值的准确性,SSGBLUP具有更佳的预测性能,因而是对快速型黄羽肉鸡饲料利用效率性状进行育种值估计更优的方法。

4 结 论

本研究以快速型黄羽肉鸡品系为素材,利用传统BLUP、GBLUP和SSGBLUP方法,对部分生长和饲料利用效率性状进行遗传参数估计和准确性分析。传统BLUP方法估计的遗传力均高于GBLUP和SSGBLUP方法估计的遗传力,4个饲料利用效率性状都为低遗传力,RIG具备同时选育日均采食量和日均增重的优势,更适合快速型黄羽肉鸡的培育目标;SSGBLUP方法利用系谱和基因组信息,克服了传统BLUP和GBLUP方法仅使用单一信息进行遗传评估的缺陷,采用最佳权重比进行SSGBLUP分析,对目标性状育种值的估计准确性最高,因而更适用于快速型黄羽肉鸡饲料利用效率性状的基因组选择。

猜你喜欢
黄羽遗传力利用效率
下半年黄羽鸡或迎景气周期
美系大白种猪生长性状和繁殖性状遗传力估计
江苏省部分地区黄羽肉鸡大肠杆菌的分离鉴定
避免肥料流失 提高利用效率
通过胎盘效率改良母猪繁殖性能的研究进展
通过胎盘效率改良母猪繁殖性能的研究进展
抗虫棉品种系主要农艺性状配合力与遗传力分析
不同白菜品种对锌的响应及锌利用效率研究
嫁接与施肥对番茄产量及氮、磷、钾吸收利用效率的影响
广东黄羽肉鸡鸡苗报价(种鸡场平均卖出价)