区惠平,周柳强,黄金生,朱晓晖,曾艳,彭嘉宇,谢如林,谭宏伟,李忠宁,沈小微,刘昔辉
基于甘蔗产量与土壤磷素平衡的磷肥施用量研究
区惠平,周柳强,黄金生,朱晓晖,曾艳,彭嘉宇,谢如林,谭宏伟,李忠宁,沈小微,刘昔辉
广西壮族自治区农业科学院农业资源与环境研究所/农业农村部华南植物营养与施肥技术科学观测实验站,南宁 530007
【】探讨南方赤红壤蔗区基于甘蔗产量与土壤磷素平衡的磷肥施用量,为该地区农田磷素高效利用与科学施磷提供参考依据。于2014—2016年在广西甘蔗主产区(南宁市武鸣区)布置田间定位试验,共设5个磷肥施用量水平,分别是0(P0)、75 kg P2O5·hm-2(P1)、150 kg P2O5·hm-2(P2)、300 kg P2O5·hm-2(P3)和 600 kg P2O5·hm-2(P4),连续3年测定甘蔗蔗茎、蔗叶产量和土壤Olsen-P含量,采用Mitscherlich模型拟合蔗茎产量对Olsen-P的响应曲线,计算土壤Olsen-P农学阈值,并分析植株磷含量,计算甘蔗吸磷量,磷肥利用率和磷素表观平衡状况。与P1处理相比,P2处理蔗茎产量显著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。蔗叶和地上部产量均以P2或P3处理最高,但不同施磷量间蔗茎、蔗叶和地上部产量整体无显著差异。P2—P4处理蔗茎磷累积量、蔗叶磷累积量和地上部磷累积量也相当。土壤Olsen-P含量、磷素表观平衡量和磷素盈余率均随施磷量的增加而显著增加,而磷素表观回收率和磷素偏生产力随施磷量的增加逐渐下降,以P1处理最高,显著高于P3和P4处理。Mitscherlich方程拟合获得Olsen-P农学阈值为13.4 mg·kg-1。相关分析表明,施磷量与磷素盈余率、磷素盈余率与土壤Olsen-P含量呈极显著的线性正相关关系(<0.01);磷素盈余率与甘蔗蔗茎产量呈极显著二次相关(<0.01),与磷素表观回收利用率、磷素偏生产力呈极显著指数相关(<0.01)。当施磷量为40.9 kg·hm-2时,磷素盈余率为0,土壤Olsen-P含量为15.87 mg·kg-1,甘蔗蔗茎产量为 94.2 t·hm-2。线性加平台拟合下的优化施磷量,土壤磷素盈余率为216.2%—232.7%,土壤Olsen-P含量为24.7—25.4 mg·kg-1,甘蔗蔗茎产量为99.7—100 t·hm-2。在Olsen-P含量较高的蔗区,40.9 kgP2O5·hm-2施用量能维持土壤磷素平衡,保持土壤适宜的Olsen-P含量,获得较高的产量与磷肥利用率,可以作为推荐的适宜施磷量。
甘蔗;磷肥施用量;Olsen-P;磷素平衡
【研究意义】施用磷肥是保障作物产量的重要措施。但磷肥进入土壤后,易被土壤吸附、固持,形成难以被植物吸收利用的磷酸盐累积在土壤中[1],造成磷肥利用率降低[2]。目前,磷肥过量施用造成土壤磷素累积的现象在全球十分普遍[3],尤以中国较为严重,土壤磷累积以年均11%的增长速率在递增[4]。过量施磷对作物增产作用不明显[5],还可能导致水体污染等环境问题[6]。因此,研究适宜的磷肥施用量对农业生产具有重要的意义。【前人研究进展】有关磷肥适宜施用量的研究很多,有单一根据作物的农艺性状表现及产量效应确定的磷肥施用量[7-8],也有根据土壤速效磷含量或磷肥利用率调整的磷肥施用量[9-10]。而综合考虑作物高产、肥料高效、土壤培肥和环境友好等因素的磷肥推荐方法更符合当前养分管理目标由单一增产向高产、环保、优质等多目标综合的变化[11]。众多研究表明,土壤速效磷含量与施磷量及土壤磷盈亏呈显著正相关关系[12-14]。土壤每盈余磷100 kg·hm-2,土壤速效磷可提升1.44—5.74 mg·kg-1[15]。适当的磷盈余有助于土壤生产力和作物生长,然而,过度的磷盈余增加磷流失风险。需要根据不同类型土壤磷素平衡关系、作物产量适当地调整磷肥投入量。吴启华等[16]在有效磷含量较高的黑土区,综合作物产量、磷素吸收、磷肥利用效率和土壤表观磷平衡、有效磷含量,认为施用常规磷水平的80%作为黑土区玉米生产的推荐施磷水平。【本研究切入点】甘蔗是我国最主要的糖料作物,其种植面积占我国常年糖料作物种植面积的85%以上,产糖量占食糖总产量的90%以上[17]。甘蔗产量的稳定增长是保障我国食糖安全的根本。然而,当前甘蔗种植区的滥施、乱施磷肥问题仍较突出,多数蔗区磷肥施入量高达465—513 kg P2O5·hm-2[18],而每吨原料蔗的磷素吸收量仅为0.27—0.7 kg[19]。目前国内外学者对甘蔗适宜施磷量的确定大多基于甘蔗的产量效应、生长农艺性状、土壤速效磷含量等某些单一指标[7-8,20-22],综合蔗田磷素收支平衡、甘蔗产量、磷素吸收利用与土壤磷素含量的甘蔗适宜施用量鲜见报道。【拟解决的关键问题】本研究通过3年定位试验系统研究不同施磷量下赤红壤蔗区甘蔗蔗茎产量、蔗叶产量、磷素吸收利用、土壤Olsen-P含量、农学阈值和磷素表观平衡状况的综合变化,旨在探讨维持甘蔗高产的前提下,确定节约高效型施磷量,以期为赤红壤蔗区磷肥科学施用提供科学依据。
本试验于2014—2016年在农业农村部华南植物营养与施肥技术科学观测实验站内(东经108°2'50.2",北纬23°14'49.0",海拔高度115 m)进行。该地属南亚热带湿润季风气候,年平均气温21.7℃,最高气温40.7℃,≥5℃积温8 046 ℃,年均降雨量1 250 mm,年蒸发量892.6 mm,无霜期约为346 d,年均日照时数1 660 h,太阳辐射量为4529 MJ·m-2。温、光、热资源丰富。供试土壤为第四纪红土发育的赤红壤,试验前0—20 cm土层土壤容重1.24 g·cm-3,pH (H2O) 5.32,有机质16.5 g·kg-1,全氮0.9 g·kg-1,全磷 0.55 g·kg-1,全钾4.5 g·kg-1,碱解氮70 mg·kg-1,Olsen-P 19 mg·kg-1,铵态氮4.67 mg·kg-1,硝态氮4.33 mg·kg-1。
设置5个磷水平:(1)不施磷肥(P0);(2)75 kg P2O5·hm-2(P1);(3)150 kg P2O5·hm-2(P2);(4)300 kg P2O5·hm-2(P3);(5)600 kg P2O5·hm-2(P4)。所有处理氮钾肥施用量相同,分别为420 kg N·hm-2和300 kg K2O·hm-2。随机区组设计,3次重复,小区面积30 m2(长10 m,宽3 m),共15个小区。试验种植的甘蔗品种为新台糖22,种植制度为1年新植蔗,2年宿根蔗,其中,2014年为新植年份,2015年为第一年宿根,2016为第二年宿根。甘蔗种植及施肥方法参见朱晓晖等[22]文献。杂草与病虫害防治与当地甘蔗种植一致。
甘蔗产量:各小区单独测产,在甘蔗收获期将各小区的甘蔗全部平地收获,脱叶,砍去尾稍,按实收甘蔗茎数测产蔗茎产量与蔗叶鲜产量。
植株样品:在甘蔗收获前取小区生长势一致的代表性植株6株,平地收获,分为甘蔗茎和蔗叶两部分。105℃杀青30 min后,70℃烘干至恒重,测定干重,粉碎后用H2SO4-H2O2消化,钼锑抗比色法测磷[23]。
土壤样品:每年甘蔗收获后使用直径2 cm的土钻,按X方式采集0—20 cm土层土壤20个点混合样,室内风干,磨细过0.25 mm筛,碳酸氢钠浸提-钼锑抗比色法测定Olsen-P含量[23]。
甘蔗产量采用线性加平台模型进行拟合,公式如下:
=+(<) (1)
=(≥) (2)
式中,为甘蔗产量(t·hm-2),为施磷量(kg P2O5·hm-2),为截距,为回归系数,为直线与平台的交点,为平台最高产量(t·hm-2)。
甘蔗吸磷量(kg·hm-2)=蔗茎产量(kg·hm-2)×蔗茎含磷量(%)+蔗叶产量(kg·hm-2)×蔗叶含磷量(%) (3)
磷素表观回收率(%)=[施磷区甘蔗地上部吸磷量(kg·hm-2)-不施磷区甘蔗地上部吸磷量(kg·hm-2)]/施磷量(kg·hm-2)×100 (4)
磷素偏生产力(kg·kg-1)=施磷区产量(kg·hm-2)/施磷量(kg·hm-2) (5)
磷素表观平衡(kg·hm-2)=施磷量(kg·hm-2)-甘蔗地上部(蔗茎+蔗叶)吸磷量(kg·hm-2) (6)
磷素盈余率(%)=磷素表观平衡(kg·hm-2)/甘蔗地上部吸磷量(kg·hm-2)×100 (7)
甘蔗相对产量r(t·hm-2)=Y/m×100 (8)
作物相对产量对土壤Olsen-P的响应关系通过Mitscherlich方程模拟,公式如下:
=×(1-e–bx) (9)
由方程模拟出的相对产量为最大值的90%时,土壤Olsen-P的含量为农学阈值。式中,Y为每年各处理蔗茎产量(t·hm-2);m为每年各处理的最大蔗茎产量(t·hm-2);是预测的相对产量;是最大的相对产量;是产量对土壤Olsen-P的响应系数。
数据采用Excel 2007进行整理,DPS 7.5 软件和SAS软件分析,Sigmaplot软件和Excel作图。不同处理间多重比较采用Duncan新复极差法(=0.05)。
表1表明,与P0处理相比,P1处理的蔗茎、蔗叶与地上部产量均无显著变化。当施磷量等于150 kg P2O5·hm-2(P2处理)时,蔗茎产量显著提高8.3%(2014年)、18.0%(2015年)和15.5%(2016年)。但P2—P4处理间无显著差异。蔗叶和地上部产量均以P2或P3处理最高,并于2015年和2016年显著高于P0处理。采用线性加平台模型拟合施磷量与蔗茎、蔗叶、地上部产量的关系得出,3年平均优化施磷量分别为140.2、147.8和142.3 kg P2O5·hm-2,获得最高蔗茎、蔗叶和地上部产量分别为102.6、22.9和125.5 t·hm-2。
图1表明,施磷显著增加耕层土壤Olsen-P含量,且随施磷量的增加呈线性显著增加(<0.01,2=0.960(2014),2=0.996(2015),2=0.998(2016)),土壤Olsen-P增加速率随年份的增加而增加,在2014、2015和2016年依次为0.048、0.082和0.131 mg·kg-1。
表1 不同施磷量对甘蔗产量的影响
同年份同列数据后不同小写字母表示处理间差异显著(<0.05)
Different small letters in the same column and the same year meant significant difference between treatments at 5% level
同一年份中不同的小写字母表示处理间差异显著(P<0.05)。下同
磷农学阈值是指当土壤中的Olsen-P含量达到某个值后,继续施用磷肥,对提高作物的产量作用很小[28]。图2显示,以Mitscherlich方程拟合甘蔗蔗茎相对产量和土壤Olsen-P的关系获得的赤红壤蔗地土壤Olsen-P农学阈值为13.4 mg·kg-1。
图2 甘蔗相对产量对土壤有效磷的响应关系
表2显示,与P0处理相比,P1处理对蔗茎磷累积量无显著影响,当施磷量大于150 kg P2O5·hm-2(P2处理)时,蔗茎磷累积量和地上部磷累积量增幅均达显著水平(<0.05),而P2—P4处理间蔗茎磷累积量、蔗叶磷累积量和地上部磷累积量均差异不显著。
图3显示,不施磷肥,蔗地磷素表观平衡处于亏缺状态,3年平均亏缺14.4 kg·hm-2。施入磷肥,蔗地磷素表观平衡均处于盈余状态,且随施磷量的增加,磷素表观平衡量和磷素盈余率显著增加。3年平均,施磷处理磷素表观平衡量盈余15.1—241.4 kg·hm-2,盈余率高达88.4%—1218.6%,不同的施磷量间差异显著。
磷素表观回收率和磷素偏生产力是衡量和评价磷肥施用经济效益和环境效益的重要指标[29]。图4显示,P1处理下,磷素表观回收率最高,3年平均为9.9%,除了2015年,P1处理与P2处理磷素表观回收率均差异不显著,但均显著高于P3和P4处理。磷素偏生产力随施磷量的增加而显著下降。3年平均,P1处理比P2、P3和P4处理显著提高88.6%、274.3%和656.9%。
表2 不同施磷量对甘蔗吸磷量的影响
图3 不同施磷量对磷素表观平衡的影响
图4 不同施磷量对磷素表观回收率和磷素偏生产力的影响
磷素盈余率与施磷量、土壤Olsen-P、甘蔗蔗茎产量、磷素吸收利用的回归分析(图5)表明,施磷量与磷素盈余率、磷素盈余率与土壤Olsen-P呈极显著的线性正相关关系(<0.01);磷素盈余率与甘蔗蔗茎产量呈极显著二次相关(<0.01);磷素盈余率与磷素表观回收率、磷素偏生产力呈极显著指数相关(<0.01)。将回归方程联立并通过内插法计算,当磷肥用量为40.9 kg·hm-2,磷素盈余率为0,土壤Olsen-P含量为15.9 mg·kg-1,甘蔗蔗茎产量为94.2 t·hm-2,与P1处理3年平均产量(96.3 t·hm-2)相近。线性加平台拟合下的优化施磷量,磷素盈余率为216.2%—232.7%,土壤Olsen-P含量为24.7—25.4 mg·kg-1,甘蔗蔗茎产量为99.7—100 t·hm-2。
作为植物体内ADP、ATP、DNA和细胞壁的主要成分,缺磷会引起作物生长障碍[30],对于甘蔗而言,施磷通过提高甘蔗分蘖和有效茎数[31-32],促进甘蔗增产[32-35],但过低或过高的施磷量均对作物增产效应不明显[36]。有关甘蔗适宜施磷量的研究,Jimmy等[37]在巴西的试验表明,施磷量为60 kg P2O5·hm-2,蔗茎产量最高(136.5 Mg·hm-2),增幅28.9%。GUSTAVO等[38]研究显示,不同的磷肥种类均在268 kg P2O5·hm-2的施用量下获得最大的甘蔗有效茎数。OMOLLO等[35]的研究结果表明,80 kg P2O5·hm-2下,蔗茎产量最高。而AMIN等[39]研究认为,对于砂壤和黏壤,施入90和180 kg P2O5·hm-2的磷酸盐或过磷酸钙均对甘蔗产量无显著影响。可见,适宜的施磷量因不同生态区域的气候、栽培、肥料种类和土壤条件而异[11]。本研究结果表明,施入150 kg P2O5·hm-2磷肥显著提高甘蔗蔗茎产量,这与雷崇华[21]和朱晓晖等[22]的研究结果一致,当继续增施磷肥,甘蔗蔗茎产量无显著变化,说明本试验地力条件下,150 kg P2O5·hm-2的施磷量即可获得甘蔗最高产。
图5 磷素盈余率与施磷量、产量、土壤有效磷含量和磷肥利用效率的关系
植物生长发育吸收的磷素主要来自土壤,而农田生态系统中磷素盈亏是土壤磷消长的根本原因[40]。因此,除了产量、经济效益、肥料利用效率等指标外,探究农田磷素平衡状况及土壤磷素变化对合理施磷量的确定有重要意义[24,41]。多数长期定位研究结果表明,不施磷肥,土壤磷素亏缺进而引起土壤全磷和Olsen-P含量下降[41-43]。但也有学者[44]认为降雨及灌水中的磷素补充可以维持连续32年不施任何肥料红壤性水稻土的全磷基本持平,Olsen-P略有增加。外源磷的长期过量投入导致土壤磷发生盈余,土壤磷积累[33,45]。本试验与上述结果相似,不施磷肥,蔗田磷素处于亏缺状态,施磷下,土壤磷素处于盈余状态,并随着施磷量的增加而增加。这主要是作物的吸收携出是土壤磷素最主要的支出项[46],在150—600 kg·hm-2的递增施磷下,甘蔗磷素吸收量相当(表2),因此,土壤磷素盈余量随施磷量的增加而大幅度增加,土壤Olsen-P含量也相应增加,这一点从磷的盈余率与施磷量、Olsen-P含量的关系也得到了很好的说明(图5)。然而,土壤Olsen-P含量与作物产量并不是正比关系[47]。Mitscherlich方程拟合甘蔗蔗茎相对产量和土壤Olsen-P的关系表明,当土壤Olsen-P含量超过13.4 mg·kg-1,甘蔗蔗茎产量不再随施磷含量的增加而增加,这与谢如林等[47]研究得出的蔗田土壤Olsen-P丰缺值为14.5 mg·kg-1相近。本研究的试验地,Olsen-P初始含量为19 mg·kg-1,已经超过该地区的Olsen-P农学阈值,施磷处理磷投入足以维持土壤磷素肥力,因此,不同施磷处理间蔗茎产量无显著差异。
大多数研究表明,磷素表观回收率和磷素偏生产力随磷肥施用量的增加而减少[24],作物获得最高产量的施磷量,其肥料利用率并不一定是最高的[48]。本研究结果表明,虽然P1处理磷素表观回收率和偏生产力最高,但蔗茎产量低于P2处理,因此,如何在维持高产的同时,保障较高的磷肥利用效率,仍是合理施磷的关键。
目前,关于甘蔗磷肥适宜用量的确定大多基于产量与施磷量的关系模型[20-21],确定的甘蔗推荐施磷量虽然能获得最高产量或最佳经济效应,却未必能维持蔗田磷处于平衡状态或最佳含量。将土壤速效磷含量持续控制在临界水平范围内的施肥量是最佳施肥量,且适用于不同肥力水平的土壤[49]。侯云鹏等[24]以理论磷素盈余为0时施磷量的95%置信区间作为磷肥的推荐依据,推荐得出的施磷范围既可保证玉米产量又能维持土壤磷素平衡。本研究结果表明,当施磷量为40.9 kg P2O5·hm-2时,磷素盈余率为0,甘蔗蔗茎产量为94.2 t·hm-2,与P1处理3年平均产量(96.3 t·hm-2)相近,而线性加平台模型拟合的优化施磷量,甘蔗产量仅比磷素盈余率为0的提高5.7%—6.1%,但显著提高土壤Olsen-P含量56%—60%,可能加剧土壤磷素向水体流失的风险。因此,在Olsen-P含量较高的蔗区,可以把40.9 kg P2O5·hm-2施用量作为推荐的适宜施磷量。
在广西赤红壤土壤Olsen-P含量较高的蔗区,土壤Olsen-P含量、磷素表观平衡量和磷素盈余率均随施磷量的增加而显著增加,磷素表观回收率和磷素偏生产力随施磷量的增加逐渐下降。40.9 kg P2O5·hm-2的施磷量可维持土壤磷素肥力的同时,获得较高的甘蔗产量和磷素利用率。
[1] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MANG W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[2] 林阿典, 陈雪雯, 黄莹, 黄振瑞, 陈迪文, 敖俊华, 周文灵, 江永, 李奇伟. 甘蔗磷营养研究进展. 甘蔗糖业, 2018(6): 51-56.
LIN A D, CHEN X W, HUANG Y, HUANG Z R, CHEN D W, AO J H, ZHOU W L, JIANG Y, LI Q W. Research progresses on phosphorus nutrition in sugarcane. Sugarcane and Canesugar, 2018(6): 51-56. (in Chinese)
[3] 张淑香, 徐明岗. 土壤磷素演变与高效利用. 中国农业科学, 2019, 52(21): 3828-3829. DOI: 10.3864/j.issn.0578-1752.2019.21.011.
ZHANG S X, XU M G. Change of soil phosphorus and its efficient utilization. Scientia Agricultura Sinica, 2019, 52(21): 3828-3829. DOI: 10.3864/j.issn.0578-1752.2019.21.011. (in Chinese)
[4] MA J C, HE P, XU X P, HE W T, LIU Y X, YANG F Q, CHEN F, LI S T, TU S H, JIN J Y, JOHNSTON A M, ZHOU W. Temporal and spatial changes in soil available phosphorus in China (1990–2012). Field Crops Research, 2016, 192: 13-20. DOI: 10.1016/j.fcr.2016.04. 006.
[5] 区惠平, 周柳强, 黄金色, 曾艳, 朱晓晖, 谢如林, 谭宏伟, 黄碧燕. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响. 中国农业科学, 2018, 51(10): 1931-1939. DOI: 10.3864/j.issn. 0578-1752.2018.10.012.
OU H P, ZHOU L Q, HUANG J S, ZENG Y, ZHU X H, XIE R L, TAN H W, HUAGN B Y.Effect of long-term different fertilization on sugarcane yield stability, fertilizer contribution rate and nutrition loss. Scientia Agricultura Sinica, 2018, 51(10): 1931-1939. DOI: 10.3864/j.issn.0578-1752.2018.10.012. (in Chinese)
[6] LI Y, STEVEN ARE K, HUANG Z G, GUO H, WEI L C, ABEGUNRIN T P, GU M H, QIN Z H. Particulate N and P exports from sugarcane growing watershed are more influenced by surface runoff than fertilization. Agriculture, Ecosysterms & Environment, 2020, 302: 107087. DOI: 10.1016/j.agee. 2020.107087.
[7] 黄琮斌, 李秀平, 李荣喜, 梁春辉, 张祥会. “3414”氮磷钾肥配比对甘蔗农艺性状的影响. 中国糖料, 2018, 40(1): 5-7. DOI:10. 13570/j.cnki.scc.2018.01.002.
HUANG C B, LI X P, LI R X, LIANG C H, ZHANG X H. Effect of “3414” N, P and K fertilizer ratio on agronomic traits of sugarcane. Sugar Crops of China, 2018, 40(1): 5-7. DOI:10.13570/j.cnki.scc. 2018.01.002. (in Chinese)
[8] 林电, 朱治强, 吴淑义, 李如飞, 余能国. 旱地甘蔗配方施肥研究初报. 华南热带农业大学学报, 2005,11(4): 8-11.
LIN D, ZHU Z Q, WU S Y, LI R F, YU N G. Initial report for balanced application of fertilizers to dry land sugarcane. Journal of South China University of Tropical Agriculture, 2005,11(4): 8-11. (in Chinese)
[9] 孙克刚, 李丙奇, 李潮海, 刘京宝, 和爱玲. 砂姜黑土区玉米田土壤有效磷施肥指标及施磷推荐-基于ASI法的土壤养分丰缺指标. 中国农学通报, 2010, 26(21): 167-171.
SUN K G, LI B Q, LI C H, LIU J B, HE A L. Abundance and deficiency indices of soil available P for maize and fertilization recommendation in Shajiang Black Soil areas-indices of soil Available P based on ASI method. Chinese Agricultural Science Bulletin, 2010, 26 (21): 167-171. (in Chinese)
[10] GERGELY T, RANNVEIG-ANNA G, BRIGITTA T, TAMÁS H. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. European Journal of Agronomy, 2014, 55: 42-52. DOI.org/10.1016/j.eja.2013.12.008.
[11] 吴良泉, 武良, 崔振岭, 陈新平, 张福锁. 中国玉米区域氮磷钾肥推荐用量及肥料配方研究. 土壤学报, 2015, 52(4): 802-817. DOI: 10.11766/trxb201409230480.
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China. Acta Pedologica Sinica, 2015, 52(4): 802-817. DOI:10.11766/trxb201409230480. (in Chinese)
[12] 刘彦伶, 李渝, 张雅蓉, 张文安, 蒋太明. 长期施肥对黄壤性水稻土磷平衡及农学阈值的影响. 中国农业科学, 2016, 49(10): 1903-1912. DOI: 10.3864/j.issn.0578-1752.2016.10.007.
LIU Y L, LI Y, ZHAGN Y R, ZHAGN W A, JIAGN T M. Effect of long-term fertilization on the P balance and critical value of soil Olsen-P in paddy soil from yellow earth. Scientia Agricultura Sinica, 2016, 49(10): 1903-1912. DOI: 10.3864/j.issn.0578-1752.2016.10.007. (in Chinese)
[13] 郭鑫年, 孙娇, 梁锦绣, 周涛, 田旭东, 陈刚. 栽培方式与施磷量对水稻养分累积、分配及磷素平衡的影响. 中国土壤与肥料, 2017(4): 104-111. DOI: 10.11838/sfsc.20170416.
SUN X N, SUN J, LIAGN J X, ZHOU T, TIAN X D, CHEN G. Cultivation way and phosphorus fertilizer on rice nutrient accumulation, distribution and soil phosphorus balance. Soil and Fertilizer Sciences in China, 2017(4): 104-111. DOI: 10.11838/sfsc. 20170416. (in Chinese)
[14] 连彩云, 马忠明. 干旱绿洲灌区大白菜施磷效应与磷肥投入阈值. 应用生态学报, 2018, 29(2): 592-598. DOI: 10.13287/j.1001-9332. 201802.027.
LIAN C Y, MA Z M. Phosphorus application effects and input threshold of Chinese cabbage in the oasis irrigation. Chinese Journal of Applied Ecology, 2018, 29(2): 592-598. DOI: 10.13287 /j.1001-9332.201802.027. (in Chinese)
[15] CAO N, CHEN X, CUI Z, ZHAGN F. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutrient Cycling in Agroecosystems, 2012, 94: 161-170. DOI:10.1007/s10705- 012-9530-0.
[16] 吴启华, 刘晓斌, 张淑香, 尹彩侠, 李桂花, 谢佳贵. 施用常规磷水平的 80% 可实现玉米高产、磷素高效利用和土壤磷平衡. 植物营养与肥料学报, 2016, 22(6): 1468-1476. DOI: 10.11674/zwyf. 16005.
WU Q H, LIU X B, ZHAGN S X, YIN C X, LI G H, XIE J G. Application of 80% of routine phosphorus rate to keep high yield and P efficiency of maize and P balance in soil. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1468-1476. DOI: 10.11674/zwyf.16005. (in Chinese)
[17] 李杨瑞. 现代甘蔗学. 北京: 中国农业出版社, 2010: 1.
LI Y R. Modern Sugarcane Science. Beijing: China Agriculture Press, 2010: 1. (in Chinese)
[18] 尚怀国, 李莉, 王克健, 谭宏伟, 兰宗宝, 杨本鹏, 彭李顺, 冷杨. 甘蔗生产化肥农药减施增效技术研究进展. 西南农业学报, 2020, 33(1): 211-216. Doi: 10.16213/j.cnki.scjas. 2020.1.034.
SHANG H G, LI L, WANG K J, TAN H W, LAN Z B, YANG B P, PENG L S, LENG Y. Research progress on chemical fertilizer and pesticide application reduction and efficiency enhancement technologies of sugarcane production. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 211-216. Doi: 10.16213/j.cnki.scjas.2020.1.034.(in Chinese)
[19] 谭宏伟. 甘蔗施肥管理. 北京: 中国农业出版社, 2009: 88.
TAN H W. Fertilization Management on Sugarcane. Beijing: China Agriculture Press, 2009: 88. (in Chinese)
[20] 段正品, 曹连福, 孙廷富, 段曰亮. 甘蔗3414 肥料试验. 云南农业, 2016(8): 50-52.
DUAN Z P, CAO L F, SUN Y F, DUAN Y L. Fertilizer test of sugarcane “3414”. Yunnan Agriculture, 2016(8): 50-52. (in Chinese)
[21] 雷崇华, 江翠平, 覃剑峰. 甘蔗测土配方施肥经济效益的研究. 广西热带农业, 2010(2): 9-12.
LEI C H, JIANG C P, QIN J F. Study on economic benefit of soil testing and fertilizer recommendation of sugarcane. Agricultural Research and Application, 2010(2): 9-12. (in Chinese)
[22] 朱晓晖, 黄金生, 曾艳, 区惠平, 周柳强, 谢如林, 谭宏伟. 红壤植蔗区施磷的淋溶风险评估. 西南农业学报, 2018, 31(3): 532-537. DOI: 10.16213/j.cnki. Scjas.2018.3.018.
ZHU X H, HUANG J S, ZENG Y, OU H P, ZHOU L Q, XIE R L, TAN H W. Phosphorous leaching risk assessment of sugarcane planting in red soil area. Southwest China Journal of Agricultural Sciences, 2018, 31(3): 532-537. DOI: 10.16213/j.cnki. Scjas.2018. 3.018. (in Chinese)
[23] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
LU R K. Analytical Methods for Agrochemistry of Soils. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[24] 侯云鹏, 王立春, 李前, 尹彩侠, 秦裕波, 王蒙, 王永军, 孔丽丽. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究. 中国农业科学, 2019, 52(20): 3573-3584. DOI: 10.3864/j.issn.0578- 1752.2019.20.008.
HOU Y P, WANG L C, LI Q, YIN C X, QIN Y B, WANG M, WANG Y J, KONG L L. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions. Scientia Agricultura Sinica, 2019, 52(20): 3573-3584. DOI: 10.3864/j.issn.0578-1752.2019.20.008. (in Chinese)
[25] 区惠平, 周柳强, 黄美福, 黄金生, 韦运兰, 谢如林, 曾艳, 刘昔辉, 朱晓晖, 谭宏伟. 不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估. 植物营养与肥料学报, 2016, 22(1): 40-47. DOI: 10. 11674 / zwyf.14298.
OU H P, ZHOU L Q, HUANG M F, HUANG J S, WEI Y L, XIE R L, ZENG Y, LIU X H, ZHU X H, TAN H W. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 40-47. DOI: 10. 11674 / zwyf.14298. (in Chinese)
[26] 林诚, 王飞, 李清华, 何春梅, 张辉. 长期不同施肥下南方黄泥田有效磷对磷盈亏的响应特征. 植物营养与肥料学报, 2017, 23(5): 1175-1183. DOI: 10.11674/zwyf.16444.
LIN C, WANG F, LI Q H, HE C M, ZHANG H. Response characteristics of Olsen-P to P balance in yellow paddy fields of southern China. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1175-1183. DOI: 10.11674/zwyf.16444. (in Chinese)
[27] 贾良平, 陈新平, 张福锁, 刘宏斌, 吴健繁. 北京市冬小麦氮肥适宜用量评价方法的研究. 中国农业大学学报, 2001, 6(3):67-73.
JIA L P, CHEN X P, ZHANG F S, LIU H B, WU J F. Study of optimum N supplying rate in winter wheat in Beijing area. Journal of China Agricultural University, 2001, 6(3): 67-73. (in Chinese)
[28] 魏猛, 张爱君, 李洪民, 唐忠厚, 陈晓光. 基于长期施肥下潮土磷素演变及农学阈值的研究. 西南农业学报, 2018, 31(11): 2373-2378. Doi:10.16213/j. cnki. scjas. 2018.11. 025.
WEI M, ZHAGN A J, LI H M, TANG Z H, CHEN X G. Study on evolution characteristics of soil phosphorus and critical value of soil Olsen-P in fluvo-aquic soil under long-term fertilization. Southwest China Journal of Agricultural Sciences, 2018, 31(11): 2373-2378. Doi:10.16213/j. cnki. scjas. 2018.11. 025. (in Chinese)
[29] 谢如林, 谭宏伟, 周柳强, 黄金生, 黄美福, 黄献华, 董文斌, 王磊. 不同氮磷施用量对甘蔗产量及氮肥、磷肥利用率的影响. 西南农业学报, 2012, 15(1):198-202. DOI: 10.16213/j.cnki.scjas.2012. 01.048.
XIE R L, TAN H W, ZHOU L Q, HUANG J S, HUANG M F, HUAGN X H, DONG W B, WANG L. Effect of N fertilizer and P fertilizer amount on fertilizer use efficiency in sugarcane yield. Southwest China Journal of Agricultural Sciences, 2012, 15(1): 198-202. DOI:10.16213/j.cnki.scjas.2012.01.048. (in Chinese)
[30] HAWKESFORD M, HORST W, KICHEY T, LAMBERS H, SCHJOERRING J, MOLLER I S, WHITE P. Function of macronutrients. MARSCHNER P.. London, UK: Elseiver, 2012: 135-189.
[31] KINGSTON G. Mineral nutrition of sugarcane//MOORE P H, BOTHA F C. Sugarcane Physiology, Biochemistry, and Functional Biology. New York: Wiley, 2014: 85-120.
[32] DEVI T C, BHARATHALAKSHMI M, KUMARI M B G S, NAIDU N V. Effect of sources and levels of phosphorus with zinc on yield and quality of sugarcane. Sugar Tech, 2012, 14(2): 195-198.DOI:10.1007/ s12355-012-0144-2.
[33] ALVARADO J S, MCCRAY J M, ERICKSON J E, SANDHU H S, BHADHA J H. Sugarcane biomass yield response to phosphorus fertilizer on four mineral soils as related to extractable soil phosphorus. Communications in Soil Science & Plant Analysis, 2019, 50(22): 2960-2970. DOI: 10.1080/00103624.2019.1689260.
[34] DOS SANTOS V R, SOLTANGHEISI A, JUNQUEIRA F H C, KOLLN O, VITTI A C, DOS SANTOS D C T, PAVINATO P S. Phosphate sources and their placement affecting soil phosphorus pools in sugarcane. Agronomy-Basel, 2018, 8(12): 283. DOI: org/10.3390/ agronomy8120283
[35] OMOLLO J O, ABAYO G O. Effects of phosphorus sources and rates on sugarcane yield and quality in kibos, Nyando sugar zone. Innovations as key to the Green Revolution in Africa, 2011: 533-537. DOI: 10.1007/978-90-481-2543-2_55.
[36] 冯媛媛, 申艳, 徐明岗, 田应兵, 任凤铃, 段英华. 施磷量与小麦产量的关系及其对土壤、气候因素的响应. 植物营养与肥料学报, 2019, 25(4): 683–691. DOI: 10.11674/zwyf.18171.
FENG Y Y, SHEN Y, XU M G, TIAN Y B, REN F L, DUAN Y H. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683-691. DOI: 10.11674/zwyf. 18171. (in Chinese)
[37] JIMMY W R A, CLAUDIA C C A, EDUARDO A M, GERSON L D, LEANDRO S DA S. Phosphorus fertilization and lime application and its effect on sugarcane growth, yield and borer attack in sugarcane. Centro Agricola, 2016, 43(1): 36-43.
[38] GUSTAVO C, RENATO DE M P, CID N S C, LEANDRO R M, RICARDO de L V, JOÃO M P J. Response of sugarcane in a red ultisol to phosphorus rates, phosphorus sources, and filter cake. The Scientific World Journal, 2015: 405970. DOI: 10.1155/2015/ 405970.
[39] AMIN S, VALDEVAN R dos S, HENRIQUE C J F, ORIEL K, ANDRÉ C V, CARLOS T DOS S D, WILFRAND F B H, MARCOS R, THAIS DEM S, PAUL J A W. Phosphate sources and filter cake amendment affecting sugarcane yield and soil phosphorus fractions. Revista Brasileira de Ciência do Solo, 2019: 43. DOI:10.1590/ 18069657rbcs20180227.
[40] 展晓莹, 任意, 张淑香, 康日峰. 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015, 48 (23): 4728-4737. DOI: 10.3864/j.issn.0578-1752.2015.23.014.
ZHAN X Y, REN Y, ZHANG S X, KANG R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. DOI: 10.3864/j.issn.0578-1752.2015.23.014.(in Chinese)
[41] 吕真真, 刘秀梅, 侯红乾, 翼建华, 蓝贤瑾, 冯兆滨, 刘益仁. 长期不同施肥对红壤性水稻土磷素及水稻磷营养的影响. 植物营养与肥料学报 2019, 25(8): 1316-1324. DOI: 10.11674/zwyf.18340.
LÜ Z Z, LIU X M, HOU H Q, YI J H, LAN X J, FENG Z B, LIU Y R. Effects of long-term fertilizations on soil phosphorus and its supply to rice in red paddy soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1316-1324. DOI: 10.11674/zwyf.18340.(in Chinese)
[42] 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 长期施肥红壤性水稻土壤磷素演变特征及对磷盈亏的响应. 土壤学报, 2017, 54(6): 1471-1485. DOI: 10.11766/trxb201703210020.
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P. Evolution of soil phosphorus in reddish paddy soil under long-term fertilization varying in formulation and its response to P balance. Acta Pedologica Sinica, 2017, 54(6): 1471-1485. DOI:10.11766/trxb201703210020.
[43] 俄胜哲, 杨志奇, 曾希柏, 王亚男, 罗照霞, 袁金华, 车宗贤. 长期施肥黄绵土有效磷含量演变及其与磷素平衡和作物产量的关系. 应用生态学报, 2017, 28(11): 3589-3598.
E S Z, YANG Z Q, ZENG X B, WANG Y N, LUO Z X, YUAN J H, ZHE Z X. Soil Olsen-P content changing trend and its relationship with phosphorus surplus and crop yield under long-term fertilization in loessial soil region on the Loess Plateau, China. Chinese Journal of Applied Ecology, 2017, 28(11): 3589-3598. DOI: 10.13287/j.1001- 9332.201711.037. (in Chinese)
[44] 叶会财, 李大明, 黄庆海, 柳开楼, 余喜初, 徐小林, 周利军, 胡惠文, 王赛莲. 长期不同施肥模式红壤性水稻土磷素变化. 植物营养与肥料学报, 2015, 21(6): 1521-1528. DOI:10.11674/zwyf.2015. 0618.
YE H C, LI D M, HUANG Q H, LIU K L, YU X C, XU X L, ZHOU L J, HU H W, WANG S L. Variation of soil phosphorus under long-term fertilization in red paddy soil. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1521-1528. DOI:10.11674/zwyf.2015. 0618. (in Chinese)
[45] 张少民, 郝明德, 柳燕兰. 黄土区长期施用磷肥对冬小麦产量、吸氮特性及土壤肥力的影响. 西北农林科技大学学报(自然科学版), 2007, 35(7): 159-163.
ZHANG S M, HAO M D, LIU Y L. Effects of long-term application of P fertilizer on the yield of winter wheat and characteristic of N absorption and soil fertility in dry-land of Loess Plateau. Journal of Northwest A & F University (Nat. Sci. Ed.), 2007, 35(7): 159-163. (in Chinese)
[46] 鲁如坤, 时正元, 施建平. 我国南方 6 省农田养分平衡现状评价和动态变化研究. 中国农业科学, 2000, 33(2): 63-67.
LU R K, SHI Z Y, SHI J P. Nutrient balance of agroecosystem in six provinces in southern China. Scientia Agricultura Sinica, 2000, 33(2): 63-67. (in Chinese)
[47] 谢如林, 黄献华, 谭宏伟, 周柳强, 黄美福, 黄金生, 董文斌. 蔗园土壤速效磷丰缺临界值的研究. 热带作物学报, 2009, 30(3): 304-308.
XIE R L, HUANG X H, TAN H W, ZHOU L Q, HUAGN M F, HUANG J S, DOGN W B. Critical level of soil available P in sugarcane grove. Chinese Journal of Tropical Crops, 2009, 30(3): 304-308. (in Chinese)
[48] 赵靓, 侯振安, 李水仙, 刘立鹏, 黄婷, 张扬. 磷肥用量对土壤速效磷及玉米产量和养分吸收的影响. 玉米科学, 2014, 22(2): 123-128. DOI: 10.13597/j.cnki.maize.science.
ZHAO L, HOU Z A, LI S X, LIU L P, HUAGN T, ZHANG Y. Effects of P rate on soil available P, yield and nutrient uptake of maize. Journal of Maize Sciences, 2014, 22(2): 123-128. DOI:10.13597/ j.cnki.maize.science. (in Chinese)
[49] 王兴仁, 曹一平, 张福锁, 陈新平. 磷肥恒量监控施肥法在农业中应用探讨. 植物营养与肥料学报, 1995, 1(3/4): 59-64.
WANG X R, CAO Y P, ZHAGN F S, CHEN X P. Feasibility of a fertilization method for keeping constant application rate of phosphorus by monitoring avaliable phosphorus in the soil. Plant Nutrition and Fertilizer Sciences,1995, 1(3/4): 59-64. (in Chinese)
Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil
OU HuiPing, ZHOU LiuQiang, HUANG JinSheng, ZHU XiaoHui, ZENG Yan, PENG JiaYu, XIE RuLin, TAN HongWei, LI ZhongNing, SHEN XiaoWei, LIU XiHui
Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/South China Scientific Observation and Experiment Station of Plant Nutrition and Fertilization Technology, Ministry of Agriculture and Rural Affairs, Nanning 530007
【】This study was conducted to explore the phosphate fertilizer rate based on sugarcane yield and phosphorus (P) balance in soil, with an aim to provide a reference for the efficient utilization and scientific management of P in farmland. 【】A 3-year continuous field trail was conducted in Wuming district of Nanning city of Guangxi province from 2014 to 2016, which was designed with five phosphate fertilization treatments, including non-phosphate fertilization (P0), 75 kg P2O5·hm-2(P1), 150 kg P2O5·hm-2(P2), 300 kg P2O5·hm-2(P3) and 600 kg P2O5·hm-2(P4). The yield of cane and leaves and Olsen-P content in soil were measured, and the relation between cane yield and Olsen-P was evaluated by Mitscherlich model. The agronomic threshold of soil Olsen-P was also calculated. Plant P content, P uptake, P utilization efficiency and P balance in soil were further analyzed. 【】Compared with P0 treatment, the cane yield was significantly increased by 8.3% (2014), 18.0% (2015) and 15.5% (2016) under P2 treatment. P2 or P3 treatments had the highest yields for leaves and above-ground part, but there was no significant difference in cane, leaves and above-ground part among different P application rates. P accumulations in cane, leaves and above were also similar among P2 to P4 treatments. Olsen-P content, P balance and P surplus rate increased significantly with the increase of P application rate, while the PRE and PPFP decreased gradually with the increase of P application rate; where P1 treatment was the highest, which was significantly higher than that under P3 and P4 treatments. The agronomic threshold of Olsne-P was 13.4 mg kg-1based on Mitscherlich model. Correlation analysis showed that P surplus rate was significantly positively correlated with P application rate and soil Olsen-P (<0.01), and which was significantly quadratic correlated with sugarcane stem yield (<0.01), and significantly exponential correlated with PRE and PPFP (<0.01). When P application rate was 40.9 kg·hm-2, P surplus rate, soil Olsen-P content and cane yield were 0,15.87 mg kg-1and 94.2 t·hm-2, respectively. While the maximum cane yield was obtained by linear and platform fitting, soil P surplus rate, Olsen-P content and cane yield were 216.2%-232.7%, 24.7-25.4 mg·kg-1and 99.7-100 t·hm-2, respectively. 【】In lateritic red soil with relatively high Olsen-P content, the P application rate of 40.9 kg·hm-2would maintain the soil Olsen P content, meet the demand for high yield and high phosphorus utilization efficiency.Thus, it could beused as therecommended Papplication amount.
sugarcane; phosphorus application rate; Olsen-P; phosphorus balance
10.3864/j.issn.0578-1752.2021.13.011
2020-08-21;
2020-10-22
国家重点研发项目(2020YFD1000600)、国家自然科学基金项目(32060293,31860350,31750368,31860157,31860159)、广西科技重大专项(桂科AA17204078-2,桂科AA20108002-2,桂AB18221027)、广西农科院项目(桂农科2021YT036,桂农科2020YM110,桂农科2019Z12,桂农科2019ZX123,桂农科2018YM27,桂农科盟202013)、农业农村部西南山地农业环境重点实验室开放基金(AESMA-OPP-2019003)
区惠平,E-mail:ouhuiping2006@163.com。通信作者谭宏伟,E-mail:hongwei_tan@163.com
(责任编辑 李云霞)