苍白球大麻素对大鼠运动行为的调控及受体机制

2021-07-08 10:49于锦锦薛雁刘翠陈蕾
青岛大学学报(医学版) 2021年2期
关键词:受体

于锦锦 薛雁 刘翠 陈蕾

[摘要]目的 探究大鼠蒼白球大麻素对运动行为的影响及受体机制。方法 将70只大鼠随机分为10组,单侧或双侧苍白球分别微量注射含二甲基亚砜(DMSO)的人工脑脊液、人工合成大麻素WIN 55,212-2、大麻素1型受体阻断剂AM 251、大麻素2型受体阻断剂AM 630、WIN 55,212-2+AM 251、WIN 55,212-2+AM 630。采用爬杆实验和提升躯体摇摆实验观察大麻素对正常大鼠运动行为的影响。结果 双侧苍白球微量注射药物后,WIN 55,212-2组大鼠爬杆时间较对照组明显缩短(F=9.436,t=4.941,P<0.01);与WIN 55,212-2组相比,联合给予AM 251和WIN 55,212-2可明显阻断WIN 55,212-2对正常大鼠爬杆时间的影响(t=3.565,P<0.05),而联合给予AM 630和WIN 55,212-2不能阻断WIN 55,212-2的效应(t=0.514,P>0.05)。单侧苍白球微量注射WIN 55,212-2可引起大鼠明显的对侧摇摆(Z=3.641,P<0.01);联合给予AM 251和WIN 55,212-2可明显阻断WIN 55,212-2诱导的对侧摇摆(Z=3.416,P<0.01),然而这一效应并没有被AM 630阻断(Z=0.764,P>0.05)。结论 苍白球给予人工合成大麻素WIN 55,212-2可通过激活大麻素1型受体增强正常大鼠的运动行为。

[关键词]苍白球;大麻酚类;运动活动;受体,大麻酚,CB1;大鼠

[中图分类号]R338.2

[文献标志码]A

[文章编号]2096-5532(2021)02-0178-04

[ABSTRACT]Objective To investigate the effect of intrapallidal cannabinoid on motor behavior of rats and the related receptor mechanism. Methods A total of 70 rats were randomly divided into ten groups, and the globus pallidus at unilateral or bilateral sides was given microinjection of artificial cerebrospinal fluid containing dimethyl sulfoxide, WIN 55,212-2 (synthetic cannabinoid), AM 251 (cannabinoid receptor type 1 antagonist), AM 630 (cannabinoid receptor type 2 antagonist), WIN 55,212-2+AM 251, or WIN 55,212-2+AM 630. The pole test and the elevated body swing test were used to observe the effect of cannabinoid on the motor behavior of normal rats. Results After the microinjection of drugs into the globus pallidus at bilateral sides, the WIN 55,212-2 group had a significant reduction in the time to reach the floor compared with the control group (F=9.436,t=4.941,P<0.01), and compared with the WIN 55,212-2 group, the administration of AM 251 and WIN 55,212-2 significantly blocked the influence of WIN 55,212-2 on the time to reach the floor (t=3.565,P<0.05), while the administration of AM 630 and WIN 55,212-2 did not block the influence of WIN 55,212-2 (t=0.514,P>0.05). The microinjection of WIN 55,212-2 into the globus pallidus at unilateral side induced significant contralateral-biased swing in rats (Z=3.641,P<0.01), and the administration of AM 251 and WIN 55,212-2 significantly blocked the contralateral-biased swing induced by WIN 55,212-2 (Z=3.416,P<0.01), while such effect was not blocked by AM 630 (Z=0.764,P>0.05). Conclusion Administration of the synthetic cannabinoid WIN 55,212-2 into the globus pallidus enhances the motor behavior of normal rats by activating cannabinoid receptor type 1.

[KEY WORDS]globus pallidus; cannabinoids; motor activity; receptor, cannabinoid, CB1; rats

20世纪60年代鉴定出大麻的主要活性成分为△9-四氢大麻酚(△9-THC)[1],而内源性大麻素(eCBs)是由人类或动物自身合成的类似天然大麻素的生物活性物质[2]。内源性大麻素系统(ECS)主要由配体、受体以及配体的合成和降解酶组成。配体主要包括2-花生四烯基甘油(2-AG)[3]和花生四烯基乙醇酰胺(AEA)[4],二者的三维构象均类似于△9-THC,人体内2-AG的含量远高于AEA,2-AG的基础水平是AEA的千倍[5-6]。大麻素1型受体(CB1R)[7]和大麻素2型受体(CB2R)[8]是eCBs作用的主要受体,均为Gi/o蛋白耦联受体。CB1R是大脑中表达最广泛的G蛋白耦联受体[9],而CB2R主要分布在免疫系统[3, 10],在脑内神经元中有少量表达[11-12]。大量的研究结果表明,eCBs在食欲、成瘾、痛觉、情绪、习惯养成、学习与记忆、奖赏与动机行为等方面发挥重要生理功能[2,13]。解剖学研究发现,CB1R在基底神经核中广泛分布,提示eCBs参与运动调控[14]。有文献报道,CB1R敲除小鼠转轮运动减少[15]。苍白球是基底神经核重要的组成部分,其神经纤维可投射到基底神经核几乎所有核团,起着重要的运动调节功能[16]。大量研究证实,CB1R在苍白球中的表达尤为丰富[17-18],但苍白球大麻素系统对正常大鼠运动行为的调控及其受体机制尚不清楚。因此,本研究采用爬杆实验和提升躯体摇摆实验等行为学方法,探讨苍白球给予人工合成大麻素WIN 55,212-2對正常大鼠运动行为的影响及受体机制。现将结果报告如下。

1 材料与方法

1.1 实验材料

1.1.1 实验动物 体质量220~300 g健康雄性Wistar大鼠,由济南朋悦实验动物繁育有限公司提供。大鼠饲养在室温(23±1)℃、湿度50%~55%、12 h-12 h昼夜交替光照条件下,自由饮水和进食。

1.1.2 实验药品 人工合成大麻素WIN 55,212-2购自于Tocris公司,CB1R选择性拮抗剂AM 251、CB2R选择性拮抗剂AM 630购于Sigma公司。使用时,用二甲基亚砜(DMSO)溶解,人工脑脊液稀释至10 μmol/L。

1.2 实验方法

1.2.1 实验分组 将70只正常大鼠随机分为10组。其中6组大鼠进行爬杆实验,双侧苍白球分别微量注射以下药物:①人工脑脊液(含有DMSO);②WIN 55,212-2;③AM 251;④AM 630;⑤AM 251+WIN 55,212-2;⑥AM 630+WIN 55,212-2。另外4组大鼠进行提升躯体摇摆实验,单侧苍白球分别微量注射以下药物:①人工脑脊液(其中含有DMSO);②WIN 55,212-2;③AM 251+WIN 55,212-2;④AM 630+WIN 55,212-2。

1.2.2 双侧苍白球套管埋置 用80 g/L水合氯醛(0.2 g/kg)麻醉后,将大鼠俯卧位固定于脑立体定位仪上,在头部正中位置做纵向切口,将骨膜剥离干净,充分暴露前后囟,调节鼻夹高度使前后囟处于同一水平面。参考大鼠脑图谱确定苍白球位置:前囟后1.0 mm,旁开3.0 mm,颅骨表面下5.0 mm。在该坐标处用牙科钻各钻一个小孔,将外径0.6 mm、内径0.4 mm、长度11.0 mm的自制不锈钢管置入苍白球上方,并用自凝牙托粉固定套管。术后连续3 d注射8万单位青霉素防止感染。套管埋置后恢复5 d进行运动行为学实验。行为学实验结束后通过组织学检查确定注药位置是否在苍白球。

1.2.3 爬杆实验 爬杆实验用于测试动物的运动功能[19]。不锈钢杆高100.0 cm,直径2.5 cm,杆的顶端装有小球,为保证杆表面粗糙,用胶布将小球及杆包裹起来。行大鼠苍白球微量注射药物(每侧0.5 μL)后,将其头朝上置于杆顶部位置,测试并记录大鼠爬下的时间。实验前让大鼠进行爬杆训练1次,实验时连续测定5次(每次测试间隔不超过30 s),取平均值。

1.2.4 提升躯体摇摆实验 筛选没有偏转倾向的大鼠进行双侧埋管后恢复5 d,单侧(随机左侧或右侧)注射药物进行实验。将大鼠放入大鼠笼里适应10~20 min,捏住距尾根2.0 cm处提起大鼠,使其头朝下鼻尖距箱底2.0 cm,观察并记录提尾10次中大鼠头部左右偏转方向及次数,计算左右摇摆的百分率。大鼠头部偏离垂直位角度大于10°认定为摇摆行为。

1.3 统计学分析

应用SPSS软件进行统计学分析。计量资料数据以x2±s形式表示,大鼠爬杆时间的比较采用单因素方差分析,事后检验采用Bonferroni法;摇摆百分率的比较采用Kruskal-Wallis检验,组间两两比较采用Mann-Whitney检验。

2 结 果

2.1 苍白球微量注射WIN 55,212-2对大鼠爬杆时间的影响

爬杆实验结果显示,对照组(n=6)、WIN 55,212-2组(n=6)、AM 251组(n=6)、AM 630组(n=6)、AM 251+WIN 55,212-2组(n=9)和AM630+WIN 55,212-2组(n=6)大鼠爬杆时间分别为(7.16±0.64)、(4.29±0.52)、(6.45±0.34)、(5.81±0.17)、(6.18±0.29)、(3.99±0.30)s。6组大鼠爬杆时间差异具有统计学意义(F=9.436,P<0.01)。组间两两比较,WIN 55,212-2组大鼠爬杆时间较对照组显著缩短(t=4.941,P<0.01);与WIN 55,212-2组相比较,AM 251+WIN 55,212-2组大鼠爬杆时间显著延长(t=3.565,P<0.05),而AM 630+WIN 55,212-2组大鼠爬杆时间无明显变化(t=0.514,P>0.05)。提示苍白球给予WIN 55,212-2可通过激活CB1R增加大鼠运动行为。

2.2 苍白球微量注射WIN 55,212-2对大鼠提升躯体摇摆行为的影响

提升躯体摇摆实验结果显示,对照组(n=9)、WIN 55,212-2组(n=9)、AM 251+WIN 55,212-2组(n=6)和AM 630+WIN 55,212-2组(n=6)大鼠的对侧摇摆率分别为(50.00±2.36)%、(80.00±2.89)%、(50.00±2.18)%和(83.33± 2.11)%。单侧苍白球微量注射的4组间比较,差异具有统计学意义(H=39.830,P<0.01)。与对照组相比,WIN 55,212-2组大鼠出现明显的对侧摇摆行為(Z=3.641,P<0.01);联合给予AM 251和WIN 55,212-2可明显阻断WIN 55,212-2诱导的对侧摇摆行为(Z=3.416,P<0.01),而联合给予AM 630和WIN 55,212-2则未能阻断大鼠对侧摇摆行为(Z=0.764,P>0.05)。

3 讨 论

大麻素受体广泛分布于中枢神经系统,对运动行为产生重要影响。有文献报道,CB1R敲除的小鼠转轮活动减少,包括跑步距离、跑步时间和最大跑步速度均下降[15]。小鼠腹腔注射CB1R拮抗剂SR141716得到相似结果,小鼠跑步距离和速度呈剂量依赖性下降[20]。WIN 55,212-2是人工合成大麻素[21],通过激活CB1R和CB2R产生多种效应,如抑制γ-氨基丁酸(GABA)释放[22-23]。苍白球表达高水平的大麻素受体。爬杆实验和提升躯体摇摆实验是评估动物运动行为的有效方法[19],本研究采用此两种方法观察苍白球微量注射WIN 55,212-2对正常大鼠运动行为的调控及其受体机制。爬杆实验结果显示,双侧苍白球微量注射WIN 55,212-2的大鼠爬杆时间明显缩短;提升躯体摇摆实验结果显示,单侧苍白球微量注射WIN 55,212-2的大鼠出现明显的对侧摇摆行为。上述研究结果提示,苍白球给予WIN 55,212-2可增强正常大鼠运动行为。WIN 55,212-2可非选择性激活CB1R和CB2R。

本研究进一步联合给予WIN 55,212-2和选择性CB1R阻断剂或CB2R阻断剂,观察苍白球WIN 55,212-2调控运动的受体机制。实验结果显示,苍白球联合给予CB1R阻断剂AM 251可阻断WIN 55,212-2对正常大鼠运动行为的增强效应,而联合给予CB2R阻断剂AM 630则不能阻断WIN 55,212-2对运动的调控作用,提示苍白球给予WIN 55,212-2主要通过CB1R发挥增强大鼠运动行为的作用。早期的行为学研究也揭示,单侧苍白球、纹状体或黑质网状带注射CB1R激动剂CP55,940可能通过非多巴胺机制改善帕金森病模型动物运动障碍[24]。

众所周知,苍白球是基底神经核功能环路的关键核团,起着重要的运动调节功能[25]。基底神经核主要通过直接通路和间接通路调节机体的随意运动、肌紧张等。直接通路是纹状体表达多巴胺D1受体的中型多棘GABA能神经元与基底神经核输出核团(苍白球内侧段/黑质网状带)的单突触联系。间接通路则来源于纹状体表达D2受体的中型多棘GABA能神经元,通过苍白球和丘脑底核发生神经纤维联系,再由丘脑底核发出谷氨酸能投射纤维至基底神经核输出核团。这些输出核团发出抑制性GABA能神经纤维投射到丘脑的外侧腹核和前腹核,进而投射至大脑皮质运动前区,形成一个神经回路。直接通路提高大脑皮质的兴奋性,而间接通路作用相反,两者相互协调、相互制约[26]。如果位于间接通路的苍白球神经元兴奋性增加,通过其发出的GABA能神经纤维就抑制丘脑底核,降低基底神经核输出核团的兴奋性,从而解除其对丘脑和大脑皮质运动区的抑制效应,增强机体运动。本研究观察到,苍白球给予WIN 55,212-2可增强正常大鼠运动行为,提示WIN 55,212-2通过激活CB1R增加苍白球神经元兴奋性。有文献报道,CB1R在脑内主要分布在突触前末梢,可抑制GABA释放[22-23]。苍白球接受大量来自纹状体神经元轴突末梢以及苍白球神经元轴突侧支的GABA能神经纤维支配。我们推测,苍白球给予WIN 55,212-2可能通过激活突触前末梢的CB1R,减少GABA释放,增加苍白球神经元兴奋性,进而发挥其对运动的调控效应。

综上所述,苍白球微量注射人工合成大麻素WIN 55,212-2可通过激活CB1R增强正常大鼠运动行为。本实验结果为脑内大麻素系统在运动调控中的作用研究提供了一定的实验依据。

[参考文献]

[1]MECHOULAM R, GAONI Y, HASHISH I V. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids[J]. Tetrahedron, 1965,21(5):1223-1229.

[2]CHANDA D, NEUMANN D, GLATZ J F C. The endocanna-]binoid system: overview of an emerging multi-faceted thera-peutic target[J]. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 2019,140:51-56.

[3]MECHOULAM R, BEN-SHABAT S, HANUS L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors[J]. Biochemical Pharmacology, 1995,50(1):83-90.

[4]DEVANE W A, HANUS L, BREUER A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor[J]. Science, 1992,258(5090):1946-1949.

[5]DI MARZO V, DE PETROCELLIS L. Why do cannabinoid receptors have more than one endogenous ligand[J]? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2012,367(1607):3216-3228.

[6]MURATAEVA N, STRAIKER A, MACKIE K. Parsing the players:2-arachidonoylglycerol synthesis and degradation in the CNS[J]. British Journal of Pharmacology, 2014,171(6):1379-1391.

[7]MATSUDA L A, LOLAIT S J, BROWNSTEIN M J, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA[J]. Nature, 1990,346(6284):561-564.

[8]MUNRO S, THOMAS K L, ABU-SHAAR M. Molecular characterization of a peripheral receptor for cannabinoids[J]. Nature, 1993,365(6441):61-65.

[9]KANO M, OHNO-SHOSAKU T, HASHIMOTODANI Y, et al. Endocannabinoid-mediated control of synaptic transmission[J]. Physiological Reviews, 2009,89(1):309-380.

[10]SPINELLI F, CAPPARELLI E, ABATE C, et al. Perspectives of cannabinoid type 2 receptor (CB2R) ligands in neurodegenerative disorders: structure-affinity relationship (SAfiR) and structure-activity relationship (SAR) studies[J]. Journal of Medicinal Chemistry, 2017,60(24):9913-9931.

[11]WU Q, WANG H. The spatiotemporal expression changes of CB2R in the Hippocampus of rats following pilocarpine-induced status epilepticus[J]. Epilepsy Research, 2018,148:8-16.

[12]SNCHEZ-ZAVALETA R, CORTS H, AVALOS-FUENTES J A, et al. Presynaptic cannabinoid CB2 receptors modulate [3H]-Glutamate release at subthalamo-nigral terminals of the rat[J]. Synapse (New York, N Y), 2018,72(11):e22061.

[13]AYMERICH M S, ASO E, ABELLANAS M A, et al. Cannabinoid pharmacology/therapeutics in chronic degenerative di-sorders affecting the central nervous system[J]. Biochemical Pharmacology, 2018,157:67-84.

[14]FERNANDEZ-RUIZ J. The endocannabinoid system as a target for the treatment of motor dysfunction[J]. Br J Pharmacol, 2009,156(7):1029-1040.

[15]DUBREUCQ S, KOEHL M, ABROUS D N, et al. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis[J]. Experimental Neurology, 2010,224(1):106-113.

[16]HEGEMAN D J, HONG E S, HERNANDEZ V M, et al. The external globus pallidus: progress and perspectives[J]. Eur J Neurosci, 2016,43(10):1239-1265.

[17]WONG D F, KUWABARA H, HORTI A G, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR[J]. NeuroImage, 2010,52(4):1505-1513.

[18]CORIA S M, ROURA-MARTNEZ D, UCHA M, et al. Strain differences in the expression of endocannabinoid genes and in cannabinoid receptor binding in the brain of Lewis and Fischer 344 rats[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014,53:15-22.

[19]HAMAUE N, OGATA A, TERADO M, et al. Brain catecholamine alterations and pathological features with aging in Parkinson disease model rat induced by Japanese encephalitis virus[J]. Neurochemical Research, 2006,31(12):1451-1455.

[20]KEENEY B K, RAICHLEN D A, MEEK T H, et al. Diffe-rential response to a selective cannabinoid receptor antagonist (SR141716: rimonabant) in female mice from lines selectively bred for high voluntary wheel-running behaviour[J]. Behav Pharmacol, 2008,19(8):812-820.

[21]SREEVALSAN S, SAFE S. The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells[J]. Molecular Cancer Therapeutics, 2013,12(11):2483-2493.

[22]ARAQUE A, CASTILLO P E, MANZONI O J, et al. Synaptic functions of endocannabinoid signaling in health and disease[J]. Neuropharmacology, 2017,124:13-24.

[23]WALLMICHRATH I, SZABO B. Cannabinoids inhibit st-riatonigral GABAergic neurotransmission in the mouse[J]. Neuroscience, 2002,113(3):671-682.

[24]SAUDO-PEA M C, PATRICK S L, KHEN S, et al. Cannabinoid effects in basal ganglia in a rat model of Parkinsons disease[J]. Neuroscience Letters, 1998,248(3):171-174.

[25]GOLDBERG J A, BERGMAN H. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction[J]. Neuroscience, 2011,198:171-192.

[26]NAMBU A, TOKUNO H, TAKADA M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect pathway[J]. Neuroscience Research, 2002,43(2):111-117.

(本文編辑 马伟平)

猜你喜欢
受体
揭示类受体蛋白RE02所介导的植物免疫反应(2020.10.11 植物微生物最前线)
毒蛙为什么不会毒到自己?
神经传递重要靶标受体结构确定
胚胎移植受体牛的饲养管理要点
新药“骗”大脑 让人少喝酒
走近诺贝尔奖(八)细胞也能感知世界
中枢神经突触长时程增强现象
β-受体过敏综合征证治探讨