陈家雪,孙哲浩
(1.佛山科学技术学院,广东 佛山 528000;2.河北科技大学生物科学与工程学院,河北 石家庄 050018)
当前,Pickering乳状液的研究逐渐成为国际的热点,该类型乳状液是由Ramsden发现并由Pickering发展,其特点是使用固体颗粒替代传统乳化剂来实现体系的稳定,此类乳状液以Pickering而命名。与传统表面活性剂稳定的乳液相比较,Pickering乳状液具有其自身的优势:1)可以大大降低乳化剂的用量,节约成本;2)对人体的毒害作用远小于表面活性剂;3)对环境友好;4)界面层厚,乳液稳定性强,不易受体系pH值、离子强度、温度及油相组成等因素的影响[1-3]。Pickering乳状液中起乳化作用的固体颗粒既不溶于水相也不溶于油相,而是在两相中部分润湿,其在水-油界面上的吸附是不可逆的,这些微米级或纳米级的固体颗粒不仅降低了体系的总自由能,也为液滴之间的接触提供了空间上的物理屏障,赋予乳液更强的稳定性。目前Pickering乳状液在实际中的应用包含3个方面,其一是应用于高内相比产品,可以创新乳状液结构,如沙拉酱、搅打奶油等类型的食品;其二是作为包埋结构应用于低内相比的产品,包埋活性物质,起到缓释、靶向输送等作用;其三是本身乳状液的聚合体,可以在创新的可食性包装膜中应用,开发对环境保护有益的包装[4-5]。
稳定Pickering乳状液的固体颗粒,吸附在油-水界面时需产生小的变形,因此固体颗粒需要具备一定的刚性,传统Pickering乳状液的固体颗粒来自一些无机矿物质如蜡质、黏土、羟磷灰石等,而这些无机的固体颗粒由于使用量及食用安全问题在食品中的应用受限,因此需要寻找一些新的材料,既能满足固体颗粒的特性,又在成本和安全性上适合于食品工业的要求[6-8]。天然的生物聚合物高分子包括蛋白质及多糖类,是优质的生物资源,具有生物相容性及亲水、亲油等特性,这类生物高分子通过一定的改性后能够满足食品级固体颗粒的要求,目前已有众多的报道[9-11],本文就生物大分子固体颗粒稳定剂及其稳定Pickering乳状液机理进行探讨和综述。
目前,公认的Pickering乳液的稳定机理主要为固体颗粒不可逆地吸附于油-水界面并形成固体颗粒单层或多层膜,从而稳定乳液,图1是Pickering乳状液稳定机理的示意图。
图1 Pickering乳液稳定机理示意图Fig.1 Schematic representations of stabilization mechanism of Pickering emulsions
分散相和连续相的性质影响着颗粒在界面上的吸附强度。一般认为,常规乳状液中的乳化剂通过降低界面的张力而形成液滴,而固体颗粒并不能降低油-水表面的张力,因此要选择合适的分散相,研究表明,增加分散相的极性能够降低界面张力。另外两相百分占比也是一个重要的因素,分散相的浓度决定了颗粒的总表面积,也就决定了所需固体颗粒的数量,过量的固体颗粒的添加会导致颗粒在连续相中的凝结。图2总结了影响Pickering乳状液稳定性的因素[12-13]。
图2 Pickering乳液稳定性的影响因素Fig.2 Factors affecting Pickering emulsion stability
固体颗粒是Pickering乳状液的核心,颗粒的润湿性、表面电荷、形状和尺寸都显著影响着乳液的构建和稳定性。选择合适尺寸的颗粒是重要的,过大不易于颗粒迅速地在界面的分配聚集,过小由于布朗运动会导致界面的不稳定性。颗粒尺寸越小,形成的乳液粒径越小,一般的固体颗粒直径都在纳米级。表面电荷决定了颗粒间的相互作用,研究表明,当表面电荷电位(Z-电位)高于30 mV或低于-30mV时,颗粒间静电排斥作用占优势,颗粒的聚集受到抑制,当颗粒的电位在-30 mV~30 mV区间内,范德华力占优势,颗粒会轻度聚集,有利于乳状液的形成。对于Pickering乳液来说,高电位的静电排斥作用降低了颗粒吸附在界面的能力。因此,适度的降低颗粒的电位,能够有利于颗粒吸附到油-水界面上,形成轻度的聚集,这种聚集作用有利于颗粒在水相中形成更好的网络结构,从而有利于乳状液的稳定。固体颗粒浓度变化对乳液的影响与表面活性剂相似,当浓度高于界面饱和度时,多余的颗粒会进入连续相中[14-15]。
为使固体颗粒能够有效地稳定乳液,其中一个重要条件是固体颗粒能够被两相液体部分润湿,即颗粒具有一定的润湿性。颗粒的润湿性与表面活性剂的亲水亲油平衡值相似,过高或者过低都不利于乳液的稳定。通常用三相接触角θ来描述颗粒的润湿性。图3为固体颗粒在油水界面三相接触角示意图。
图3 固体颗粒在油-水界面的三相接触角示意图Fig.3 Schematic representation of the three-phase contact angle of a particle at oil-water interface
由图3可见,当θ<90°时,固体颗粒亲水性较强;当θ>90°时,固体颗粒亲油性较强;当θ=90°时,颗粒既亲水又亲油。因此,当θ值在0~90°时,一般形成O/W型的乳状液,而θ值在90°~135°时,一般形成W/O型的乳状液,这种规律适合于单分散的乳状液。
纳米固体颗粒包括有球形、立方体、飞碟状及杆状等,形状如图4所示。颗粒的形状可以用纵横比来描述,纵横比是颗粒最小直径与其正交的最大直径的比率,具有较高纵横比的颗粒对乳液的稳定性更好,因此飞碟状和杆状的稳定性要高于球状的。
图4 固体颗粒的形状Fig.4 Graphical illustration of solid particles with varies shapes
颗粒的形态会影响乳状液的稳定性,当颗粒为规则的各向同性颗粒时,其吸附能符合等式ΔG=-πR2γ(1-|cos(θ)|)2,其中 ΔG 为解吸能,R 为颗粒的半径,γ为界面张力,θ为接触角。通过电镜的观察发现许多的纳米固体颗粒其实并不是规则的,而且表面是粗糙的,而这种不规则及表面粗糙的各项异性的颗粒其实对于乳状液的稳定性影响是正向的,如纤维素微纤丝,其更容易在界面上形成缠绕型的网络结构,使乳状液更加趋于稳定,这可能是由于各项异性的颗粒引起了颗粒在界面上的毛细管变形,增加了相邻颗粒间的毛细管吸引力,从而增强乳状液的稳定性[16-17]。
传统的Pickering无机颗粒制备工艺复杂、条件严苛、成本也较高。目前,高分子生物聚合物因具有细胞毒性低、易被降解、生物兼容性良好和利用率高的优点而备受青睐,蛋白质与多糖类是最常用作固体颗粒的生物高分子,已成为食品领域制备Pickering固体颗粒的热点材料,常用凝聚技术、喷雾干燥技术以及反溶剂沉淀等方法制造纳米级固体颗粒。生物高分子存在的问题是由于来源及提取分离方法的不同,其在分子量、尺寸、功能特性等方面差异性很大,因此怎样用最简单的制取及改性方法获得所需特性的固体颗粒是食品研究者们需要解决的问题[18-34]。
蛋白质由于具有亲水亲油的两亲性质,可以吸附在油-水界面上,降低界面的自由能,同时也能够在界面上形成一层厚的立体阻隔层,防止乳状液的聚结从而稳定常规的乳状液。蛋白质在等电点会发生凝聚而导致乳状液的不稳定,因此蛋白质固体颗粒稳定的乳状液要考虑系统的pH值、离子强度等影响因素。蛋白质也可以制成蛋白质纤维丝,增加颗粒的纵横比,在高浓度的添加时,可以通过立体排斥作用而达到高的乳化稳定性[35-38]。
2.1.1 基于植物蛋白的固体颗粒稳定剂
植物蛋白因为其具备更强的疏水性以及其分离纯化较为困难,之前作为固体颗粒稳定剂的研究并不多。近些年来由于技术进步,植物蛋白的分离纯化及改性技术的发展,促进了其在Pickering乳状液的应用。大豆蛋白、花生蛋白由于其过敏原的性质,应用受到一定的限制,但其它的植物来源的改性蛋白应用在Pickering乳状液的报道越来越多,如豌豆蛋白、玉米蛋白、大麦醇溶蛋白等都有许多的报道[39-44]。Céser[45]开发了食品级的羽扇豆蛋白热诱导的固体颗粒,具有高的表面带电性质和部分的润湿性,有效地稳定了乳状液,与原初未热变性的蛋白相比,热诱导凝集的蛋白表现出更好的乳化活性,14 d贮存期表现出好的抗分层特性;微观结构研究表明,由该蛋白形成的乳液是典型的Pickering乳状液。一些难溶的蛋白质通过适度的改性也可以制备Pickering乳状液,Ren等[46]研究从茶叶中得到的难溶蛋白质对于Pickering乳状液的影响,在内外相O/W 6∶4的体积比下,添加4%的茶叶难溶蛋白,40 MPa的均质压力下,能够制得稳定的Pickering乳状液。
2.1.2 基于动物及微生物蛋白的固体颗粒稳定剂
一些可溶蛋白进行适度的变性,交联等方法形成蛋白质聚集体颗粒,可以制备Pickering乳状液。Chen等[47]用戊二醛交联的酪蛋白纳米凝胶颗粒,平均粒径179 nm,具有较好的稳定性。Xu等[48]从大肠杆菌中获得的热休克蛋白能够稳定Pickering乳状液,0.3%~0.45%的热休克蛋白添加量,能够稳定5%~20%内相制得的乳液,且在pH 7,温度≤40℃,离子强度≤50 mmol/L,乳状液表现出最强的稳定性。
2.2.1 基于淀粉的固体颗粒稳定剂
淀粉广泛存在于自然界,因其非过敏原、材料便宜等特点是食品制造业的常用的配料之一。乳状液的液滴直径一般在1μm~10 μm,一般需要固体颗粒直径小一个数量级,在纳米级的水平。天然淀粉以颗粒形式存在于自然界中,直径一般在几纳米,因此需要降低淀粉的直径以满足固体颗粒的要求。淀粉也可以通过其它的改性方式来满足固体颗粒的要求,如水解、有机溶剂沉淀、超声波处理、离子胶凝、接入疏水基团如辛烯基琥珀酸酐改性等,通过这些方法可以制备具有特定属性的改性淀粉纳米颗粒、纳米结晶体及纳米微球粒等固体颗粒产品[49-51]。
最简单的方法是天然淀粉直接研磨成纳米颗粒,可以用于乳液的稳定,但稳定性及能耗方面需要进一步的改善。酸水解一般用H2SO4或者HCl,酸解的主要作用是去掉淀粉的非结晶区,从而有力于淀粉纳米结晶体的形成。有机溶剂沉淀法一般是用酒精将糊化的淀粉沉淀来制造纳米颗粒。酸解和有机溶剂沉淀可以采用超声波辅助,由于超声波的空穴效应,产生强的剪切力,有助于减小淀粉的颗粒,从而提升纳米颗粒的得率。离子凝胶是用二价的钙离子与淀粉的结合体制备微凝胶颗粒的方法,是一种创新的方法。
淀粉由于其自身的结构特性,亲水性要高于其亲油性,因此其在界面上是多数在水相这一侧,为了能够更加稳定乳状液,需要对其进行疏水性改造。接入辛烯基琥珀酸酐是常用的改性方法,目前来自于大米、马铃薯、蜡质玉米等天然淀粉经改性后制得的微球粒,都表现出良好的稳定乳状液的能力。淀粉也可与其他的多糖类如纤维素纳米结晶体复配使用,来稳定Pickering乳状液[52-53]。
不同来源的淀粉及不同的改性方式形成了不同的淀粉固体颗粒,其差异表现在颗粒在界面上的变形以及接触角上。酸解由于将淀粉的非结晶端去掉,因此所制得的颗粒刚性高,而研磨的淀粉纳米颗粒则既有刚性的颗粒,又有柔性的颗粒,而有机溶剂沉淀法制得的颗粒则包含更多的柔性颗粒,因此更多的是多孔的结构,更容易变形。直链淀粉的含量决定了颗粒的润湿性质,直链淀粉含量高,形成的接触角大,表明更加的亲油和稳定,研究表明木薯、马铃薯以及常规的玉米淀粉的纳米颗粒接触角θ在84°~95°左右,而蜡质玉米淀粉接触角θ为46°,因此蜡质玉米淀粉在界面上表现出更强的亲水性,因此使用时则更需要进行疏水性改造[54-55]。
2.2.2 甲壳素及壳聚糖颗粒
甲壳素与纤维素类似,骨架上含有羟基,除此之外还含有氨基,因此表现出不一样的带电性质和对于体系pH值的依赖性。当pH值低时,甲壳素带有正电荷,因此可以利用其带电性质制备相应的颗粒,当在高pH值时,氨基去质子化,变为不带电的聚合物,依赖于其高分子聚合物的特性来制备颗粒[56]。另外,其结构也是半结晶的结构,通过水解可以制得完全结晶杆状结构的固体颗粒来稳定乳状液。Li等[57]研究壳聚糖盐酸盐与羧甲基淀粉复合的纳米微凝胶制作的Pickering乳状液的稳定性并包埋β-胡萝卜素进行靶向输送实验,与传统小分子乳化剂形成的乳状液相比,其对热是稳定的,可以降低30%脂质氧化。
2.2.3 基于纤维素及其衍生体的固体颗粒稳定剂
最近有关纤维素及其衍生体制造纳米固体的报道越来越多。纤维素是自然界存在最多的生物质资源,一般包括植物来源的纤维素以及微生物来源的纤维素。植物来源的如柑橘纤维、竹笋纤维、红杉木等。微生物来源的纤维素如木醋杆菌发酵的细菌纤维素,由于不含木质素和半纤维素,因此纯度高,使用比较方便,一般在医药中使用[58-59]。
目前研究比较集中于植物来源的纤维素的开发,来源于竹笋纤维、木材、柑橘、麦类的纤维经过改性用于Pickering乳状液。植物来源的纤维素是构成细胞壁的主要材料,天然的纤维素结构包含有结晶区和非结晶区,非结晶区由于聚集的分子链被打开,羟基基团暴露出来,因此表现出一定的亲水性,而结晶区具有一定疏水性,因此一种方法是可以直接制造微纤化纤维素纳米颗粒,这种类型的纤维素其直径一般达到纳米级,而长度是微米级的,其稳定机理一般认为是通过缠绕形成凝胶网络结构而稳定乳状液。Caroline等[60]研究甜菜根阳离子化的纤维素纳米晶体和纳米纤维丝,前者是杆状的结构,颗粒在纳米级别,而后者是纤维素丝状结构,在直径上是纳米级的,而在长度上是微米级的,两者都表现出良好的稳定性。非结晶区可以通过酸水解而去掉一部分或完全去掉,变成结晶结构占主体,可以制作第二种类型的纳米固体颗粒,即微晶纤维素或者纳晶纤维素,纳米晶体纤维素通过静电吸引,高密度的排列于界面上稳定乳状液,因此是很好的固体颗粒的来源。Li[61]研究了五节芒稻草制得的纳米纤维素结晶,添加0.15%能够不可逆的吸附于界面上,形成稳定的Pickering乳状液,且乳状液表现出在不同pH值、温度及离子强度下的稳定性。
纤维素的疏水改造有利于制造固体颗粒,Hoang等[62]研究了辛烯基琥珀酸酐改性的纤维素纳米晶体,由于具有更多的疏水性质而稳定乳状液。
除天然的纤维素外,目前的一些化学改性纤维素如甲基纤维素、乙基纤维素、羟丙基纤维素等也有制成固体颗粒的报道[63-66]。这些纤维素溶解性表现出一定的溶剂选择性,因此可以利用不同溶剂中溶解度的不同,调节pH值和离子强度,通过沉淀法制备不同形状和尺寸的固体颗粒。因此,可以预测,未来改性的纤维素必将是食品级固体颗粒重要的材料来源[67-69]。
蛋白与小分子乳化剂、多糖与小分子乳化剂、蛋白质与多糖的交互作用会影响固体颗粒的性质,这些分子间的交互作用在一定的pH值、离子强度、温度等条件下产生协同增效用,有效地稳定Pickering乳状液[70-74]。
蛋白质由于其结构的关系,尤其是植物蛋白,亲脂性要高于亲水性,其在界面上是偏向于油相,这样形成的乳液稳定性不强,因此需要进行亲水性改造,多糖类由于亲水性强,因此常用来与蛋白质复配使用来构造乳状液的固体颗粒[75-78]。多糖与蛋白质可以通过物理或化学作用形成共聚体或复合体,在界面上进行亲水-亲油调节,达到平衡,从而稳定乳状液[79-81]。一种方法是将多糖作为传统的稳定剂,吸附在蛋白质的纳米颗粒上,包裹蛋白质纳米颗粒,形成多层的核-壳结构,这种核-壳的结构在广泛的pH值和高的离子强度下表现出稳定性,这主要是依赖于多糖的空间阻隔和静电排斥作用。第二种方法是创造蛋白质与多糖的络合体纳米颗粒,通过疏水交互作用、氢键等化学键结合形成的紧密的结合体,这种紧密结合体直径大约100 nm,因此是理想的纳米固体颗粒。这样的颗粒均匀分布在液滴的表面,防止液滴之间的聚集,同时在液滴之间有架桥链接稳定作用,导致一些高内相比的乳状液形成凝胶状的结构,限制了油滴的流动,从而稳定了乳状液[82-85]。值得注意的是这类络合体有时是受体系pH值的影响,在不同的pH值条件下,颗粒表现出不同的稳定机理或者表现出不稳定性,导致乳状液的分层及聚结。Chen[86]研究玉米蛋白与果胶的共聚体包埋白藜芦醇的研究,玉米蛋白-果胶颗粒降低了乳状液液滴颗粒的直径,颗粒接触角78°,能够作为一稳定的包埋结构,包埋生物活性物质。Zhang[87]研究了卵白蛋白-海藻酸钠共聚体能够稳定高内相比的Pickering乳状液,类似的研究已经有很多报道。
食品的成分构成是复杂的,有时蛋白质、多糖、小分子乳化剂是共存的,因此研究多成分下乳状液的稳定性更趋于实际。Wei等[88]研究了鼠李糖脂、皂苷以及茶皂素等天然的小分子乳化剂对于玉米蛋白-藻酸丙二醇脂固体颗粒的界面特性的影响,这些小分子乳化剂能够渗透到界面之间而且也能够吸附到界面上调节颗粒的润湿性,一些带负电荷的小分子乳化剂能够增强颗粒的静电排斥作用以及通过与颗粒的作用提高颗粒的立体排斥作用,液滴的直径也由于一定浓度的小分子乳化剂的加入而变小,Pickering乳液趋于更加稳定。
总之,分子间的相互作用是复杂的,也是可以被食品的研究者所利用的,通过这些分子间的相互作用能够形成一些独特结构或者独特性质的纳米固体颗粒,对于Pickering乳状液的流变特性、微观结构、润湿性产生影响,创造出更加稳定的乳状液体系,为食品的研究者提供理论基础和实际的产品应用。
尽管目前有关Pickering乳状液研究及不同的固体颗粒开发有许多的报道,怎样将其转化为实际的应用是关键。一些实际的问题依然存在,正如Brent[89]提出的,如何测量一些不规则的颗粒、表面不均一的颗粒的接触角;尽管依据能量等式计算的解吸能,如何来解释实际颗粒要从液滴表面解吸时需要更大的能量;尽管一些报道表明Pickering耐受剪切,其实真实的结果并非这样,一种解释是当剪切发生时,作用力并非均匀地作用于液滴周围的每个颗粒,而是聚集了所有的力作用于部分颗粒,这样的能量远远大于吸附在液滴表面的解吸能,因此导致了颗粒与液滴的分离,液滴开始聚结从而乳液变得不稳定,但真实的原理是什么还需深入的研究;许多的天然聚合物形成的纳米颗粒形状并不是均一的,因此在界面上也很难均匀排列;在真实的食品体系内,纳米固体颗粒要和小分子乳化剂在界面上形成竞争性吸附,一般分子越小,越容易快速的吸附在界面的表面,因此固体颗粒是否能够真正像理论上讲的能够均匀地吸附于液滴的表面以及其真实的接触角是多少,这些都需要食品研究者们进一步的研究。