基于最优光谱指数的大豆叶片叶绿素含量反演模型研究

2021-06-10 07:15于海业张郡赫周海根孔丽娟党敬民隋媛媛
光谱学与光谱分析 2021年6期
关键词:波长叶绿素反演

刘 爽, 于海业, 张郡赫, 周海根, 孔丽娟, 张 蕾, 党敬民, 隋媛媛

吉林大学生物与农业工程学院, 吉林 长春 130022

引 言

叶绿素含量与植被的光合能力、 生长发育以及营养状况有很密切的关系, 可有效反映其胁迫、 生长和衰老等状况[1], 因此定量估测叶绿素含量等植被生化、 生理参数, 成为植被监测研究的重点。 大豆是人类和动物饮食中重要的蛋白质和脂肪酸来源, 是世界上最大的饲料蛋白来源, 也是第二大食用油来源, 在全球范围内的种植面积超过1.215亿公顷[2], 保证大豆优质高效生产具有重要意义。 在各个发育阶段中, 花芽分化期表示大豆开始进入生殖生长和营养生长并进的关键时期, 这一时期较高的叶绿素含量可以促进大豆叶片生长、 提高光合能力、 光合效率及产量。 因此, 大豆叶片中的叶绿素含量、 浓度等研究受到了众多学者的高度关注。

针对植被叶绿素含量的反演方法, 由初期使用多元回归反演方法逐渐转为使用基于经验/半经验的光谱指数反演方法。 同时, 也有学者使用物理模型方法进行反演, 但由于物理模型反演算法复杂, 不确定性因素较多, 很多输入参数难以获得, 导致反演精度受到限制[3]。 相比之下, 基于两个或多个光谱波段通过线性或非线性组合构建的光谱指数建立反演模型的方法, 不仅所体现的光谱信息比单波段具有更好的灵敏性, 同时可在一定程度上消除使用过多波段带来的波段过拟合问题, 使统计分析结果更准确且更具有说服力, 因此, 此种方法被广泛用于植被生理生化参量的反演研究[4]。

大量国内外研究表明, 使用反射光谱和一阶微分光谱构建的光谱指数具有定量反演作物生化参数的能力, 可以有效克服人工观测主观性强、 效率低的弊端, 又可以解决遥感技术受分辨率、 空域条件、 气象状况、 时间周期等因素制约的问题[5]。 Yang等[6]为了更精确地用叶绿素荧光监测植物生理规律, 通过分析光合有效辐射(PAR)的吸收过程、 太阳诱导叶绿素荧光(SIF)的散射和再吸收过程, 创建了荧光校正植被指数(FCVI)用于分析该过程的组合影响, 结果表明: 当植被在自然生长阶段和季节变化时, 这种方法增强了人们对植被生理过程的理解, 从而更有针对性地对植被进行精准高效的管理。 Xu等[7]通过使用光谱指数NDRI、 mSR等开发了一种将贝叶斯网络(BN)和PROSAIL模型耦合的新方法, 用以估计水稻冠层叶绿素含量, 结果表明: 此方法提高了叶绿素含量的反演精度, 并且在提高作物生长参数的估计准确性方面具有重要作用。 José Raúl Román等[8]利用不同的光谱变换形式计算植被指数进行叶绿素a含量的无损定量分析, 结果表明: 反射率的一阶导数对于叶绿素a的检测最准确, 建立的非线性随机森林(RF)模型提供了较好的拟合度, 决定系数R2>0.94。 刘潭等[9]用4种较优的光谱指数建立基于最小二乘支持向量机(LSSVM)和PROSAIL辐射传输机理的混合模型, 用以提高水稻叶绿素估测精度和模型的可解释性, 结果表明: 此混合模型具有较低的预测偏差, 其建模集R2=0.740 6, RMSE=0.985 2, 验证集R2=0.733 2, RMSE=1.084, 具有较高的估测精度和良好的鲁棒性。 有研究通过计算12个光谱指数与冠层叶绿素含量相关性指标, 来评估光谱指数在不同叶倾角分布(LAD)下反演玉米叶绿素含量的敏感性差异, 同时基于实测数据建模, 结果表明指数MNDVI8对LAD变化最不敏感, 反演模型的精度最高, 决定系数R2=0.70, 均方根误差RMSE=22.47。

光谱指数可定性或定量地反映和评估作物生长的各项指标, 建立光谱指数与叶绿素含量之间的定量模型, 也是田间和实验室测量叶绿素含量进行验证的有效估算方法[11], 本文使用光谱指数进行大豆叶绿素含量的反演。 以往使用光谱指数进行作物叶片叶绿素含量的估算研究中, 众多学者使用固定波长进行光谱指数的计算, 再与叶绿素含量进行相关性分析, 最后选取相关性较好的光谱指数建模。 而对于不同的研究对象, 因其生长环境等因素的不同, 会使作物本身的生理信息产生差异, 导致光谱特征不同, 这时再使用相同的波长可能会造成光谱数据无法充分利用, 计算出的光谱指数建立反演模型具有一定的局限性, 模型精度在一定程度上也会受到制约。 为解决上述问题, 本工作利用相关矩阵法进行光谱指数特征波长的筛选, 使特征波长与所用大豆叶绿素含量的相关性最高。

研究中采集大豆叶片高光谱和叶绿素含量数据, 并基于原始和一阶微分高光谱分别进行7种(共14个)光谱指数的计算, 再采用相关矩阵法与叶绿素含量进行相关性分析, 提取出最优的波长组合, 最后将14个光谱指数与3种回归方法组合建模, 探讨基于不同光谱指数(输入变量)和建模方法的组合对反演大豆叶片叶绿素含量准确性的影响, 为研究精准、 无损且快速的大豆叶绿素含量检测技术提供理论依据。

1 实验部分

1.1 样品

本实验于吉林大学生物与农业工程学院日光温室内进行, 供试大豆品种为虎山60, 采用盆栽实验。 于2019年7月20日播种, 每盆播种1粒种子, 共播种50盆, 最后选取27株长势旺盛和叶片健康无病虫害的大豆作为实验样本。

1.2 数据采集与处理

实验于2019年8月20日(花芽分化期)的10:00—14:00进行数据采集, 采集地点位于温室内, 数据测量时天气晴朗, 每株测量4片大豆功能叶片, 样本量为108个, 采集叶片的高光谱和叶绿素含量数据。 高光谱数据采用美国Analytical Spectral Devices分析光谱仪器公司生产HH2地物光谱仪测定, 测量范围325~1 075 nm, 采样间隔1.4 nm, 分辨率3 nm@700 nm, 每片叶获取3条数据。 叶绿素含量采用日本KONICA MINOLTASPAD-502叶绿素仪测定, 每片叶片获取3条数据。 因SPAD-502读数与叶绿素含量密切相关[10], 因此, 将其值代表叶绿素含量。 以上2种数据均取其平均值作为所用数据。 数据处理与分析软件为ViewSpec Pro、 Matlab R2015b和Origin 19.0。

2 结果与讨论

2.1 光谱指数的构建

表1 光谱指数名称、 公式和参考文献

2.2 最优光谱指数波长组合的提取

本文利用相关矩阵法分别进行上述14个光谱指数与SPAD值间的相关性分析, 并绘制相关矩阵图, 以最大相关系数所在的i和j波长位置作为最优的波长组合, 如图1所示, 蓝色到黄色表示高负相关到高正相关。

图1 光谱指数与SPAD值相关矩阵图

由图1(a—n)分别提取出的光谱指数与SPAD值相关系数最大值rmax及其所在的波长位置如表2所示。 可见, 14个指数与SPAD值的rmax均高于0.8, 表明相关性较好, 其中与SPAD值相关系数最高的是DI值, 为0.889 9, 波长组合位于735和732 nm。 一阶微分反射率计算的光谱指数中, 与SPAD值相关系数最高的是FDDI值, 为0.877 9, 波长组合位于727和788 nm。 按rmax值由高到低进行排序的结果为: DI>FDDI>FDSAVI>TVI>SAVI>RI=NDVI>mSR=mNDI>FDNDVI>FDRI>FDTVI>FDmSR>FDmNDI。 由原始反射率计算的指数中, 其中5个指数(RI, NDVI, mSR, mNDI和SAVI)优选出的波长组合均为728和727 nm; 由一阶微分反射率计算的指数中, 其中3个指数(FDNDVI, FDmSR和FDmNDI)优选出的波长组合均为726和705 nm, 上述4个波长均属于红边, 红边是绿色植物在670~760 nm之间反射率增高最快的点。 有研究表明, 叶片中叶绿素的吸收光谱曲线存在红边, 而水、 类胡萝卜素的吸收光谱曲线不存在红边, 叶片中其他成分对光的吸收作用小, 所以叶片光谱红边的出现是由叶绿素导致的, 叶绿素含量的变化及特征信息可最大程度地反映在红边上, 即红边对叶绿素含量具有较高的敏感性[14], 所以本文提取出的最优波长位置与前人的研究结果相符。

表2 光谱指数与SPAD值相关系数最大值及波长位置

2.3 基于最优光谱指数建立叶绿素含量反演模型的比较分析

根据上述研究提取出的14组最优波长组合, 将其分别代入对应的光谱指数计算公式中进行计算, 得到对应最优光谱指数值, 也称最优光谱指数, 再基于最优光谱指数建立大豆叶绿素含量反演模型。 本研究为了对比基于不同最优光谱指数组合的建模效果, 将14个最优光谱指数划分为3组作为模型输入变量, 第一组变量为由原始反射光谱计算的7个最优光谱指数, 分别为RI(728, 727), DI(735, 732), NDVI(728, 727), mSR(728, 727), mNDI(728, 727), SAVI(728, 727)和TVI(1007, 708), 称为组合1; 第二组变量为由一阶微分反射光谱计算的7个最优光谱指数, 分别为FDRI(727, 708), FDDI(727, 788), FDNDVI(726, 705), FDmSR(726, 705), FDmNDI(726, 705), FDSAVI(727, 788)和FDTVI(760, 698), 称为组合2; 第三组变量为按表2中所有rmax值由高到低排序的前7位, 分别为DI(735, 732), FDDI(727, 788), FDSAVI(727, 788), TVI(1007, 708), SAVI(728, 727), RI(728, 727)和NDVI(728, 727), 称为组合3。 采用间隔取样法将108个样本按2∶1的比例划分校正集和验证集, 即校正集有72个样本, 验证集有36个样本。 采用偏最小二乘回归(partial least squares, PLS)、 最小二乘支持向量机回归(least squares support vector machines, LSSVM)和LASSO回归3种回归方法建模, 本文中PLS方法建模的主成分数均为3。 以决定系数R2和均方根误差(root mean square error, RMSE)作为模型评价指标,R2越接近于1、 RMSE越小, 表明模型精度越高。

表3 不同输入变量和建模方法组合的大豆叶绿素含量反演模型结果

图2 不同输入变量和建模方法组合的大豆叶绿素含量反演模型验证集预测结果

3 结 论

以大豆花芽分化期叶片为研究对象, 测量了大豆叶片的高光谱和叶绿素含量数据, 并对原始高光谱进行一阶微分处理, 再分别基于原始和一阶微分高光谱反射率进行7种光谱指数(共14个)的计算, 采用相关矩阵法提取最优的波长组合, 进而计算最优光谱指数, 最后基于最优光谱指数与PLS, LSSVM和LASSO回归建模方法进行组合建立大豆叶片叶绿素含量反演模型, 得出以下结论:

(1)提取出的14个基于最优波长组合计算的光谱指数与叶绿素含量间均具有较好的相关性, 相关系数最大值均大于0.8, 其中DI(735, 732)和FDDI(727, 788)表现出最高的相关性, 相关系数值分别为0.889 9和0.877 9。

基于光谱指数建立植被生理生化参数反演模型的研究中仍有一些问题有待解决, 如本研究及大多数学者的研究多以单一植被生长期为实验时期, 将其研究结果应用于植被整个生长期的可靠性还需进一步考察, 如何将单个时期与整个生长期的生理生化反演模型通用并达到较高的模拟性能和精度仍需更深入的研究与实践。

猜你喜欢
波长叶绿素反演
HPLC-PDA双波长法同时测定四季草片中没食子酸和槲皮苷的含量
反演对称变换在解决平面几何问题中的应用
提取叶绿素
桃树叶绿素含量与SPAD值呈极显著正相关
基于低频软约束的叠前AVA稀疏层反演
基于自适应遗传算法的CSAMT一维反演
双波长激光治疗慢性牙周炎的疗效观察
叶绿素家族概述
日本研发出可完全覆盖可见光波长的LED光源
便携式多用途光波波长测量仪