刘 建,张明华
(华南师范大学物理与电信工程学院,广州 510006)
近年来,随着无线技术和半导体技术的飞速发展,射频能量收集 (Radio Frequency Energy Harvesting,RFEH)技术越来越受到工业界和学术界的广泛关注. RFEH技术是一种新型电力能量获取技术,通过天线收集散布在空气中离散的射频信号或来自特定射频信号源发射的射频信号,然后通过整流电路将射频信号转换为直流电压,从而为后续电路提供全部或部分能量. 这种从环境中获取射频能量的方式可以克服传统电池供电带来的使用寿命有限、维护成本高等不利因素,大大拓展了一些低功率电子设备使用的灵活性. 目前,RFEH技术可被广泛应用于无线传感网络( Wireless Sensor Networks,WSNs)[1-3]、物联网(Internet of Things,IoT)[4-6]、植入式生物医疗设备(Biomedical Implanted Devices,BIDs)[7-9]等.
整流天线是射频能量收集系统中的重要组成部分,其主要作用是接收(或采集)射频能量并将其转换为直流能量. 整流天线(Rectenna)主要由天线(Antenna)和整流电路(Rectifier)两部分构成[10]. 整流电路的性能对于整流天线和整个RFEH系统的性能都具有重要影响. 通常,整流电路的性能指标有:射频-直流功率转换效率(RF-to-DC Power Conversion Efficiency)、频带宽度、输入功率范围等. 考虑到环境中的射频信号分布在多个不同的频带,因此,对宽带整流电路进行研究具有重要意义. 然而,由于整流电路的非线性特征,使高效率宽带整流电路的设计具有挑战性[11].
目前,国内外一些学者已经对宽带整流电路开展了一定程度的研究. 例如双支路匹配网络的宽带整流电路[12],当输入功率为10 dBm时,该整流电路在1.8~2.5 GHz频率范围内,整流效率均大于40%. 此外,基于二阶分支线耦合器宽带整流电路的研究[13]表明:当输入功率为17.2 dBm时,该整流电路在2.08~2.58 GHz频率范围内,整流效率均大于70%. 上述设计方案[12-13]虽然在一定程度上拓展了整流电路的带宽,但这些设计不仅增加了电路尺寸和复杂度,也造成了更大的插损,不利于整流电路效率的提升. 在基于非均匀传输线设计的宽带整流电路[14]中,当输入功率为10 dBm时,该整流电路在470~860 MHz频带范围内转换效率均大于60%,但是其匹配网络大幅增加了电路尺寸. 在基于两级匹配网络的宽带整流电路[15]中,当输入功率为19.5 dBm时,该整流电路在1.80~2.72 GHz频率范围内转换效率大于70%. 在采用多个二极管和频率选择性网络设计的宽带整流电路[16]中,当输入功率为10 dBm时,该电路在1.75~3.55 GHz频带内,整流效率均大于70%.
宽带整流电路的设计方案普遍存在尺寸大、电路结构复杂等问题,大大限制了射频能量收集技术的应用. 为了适应射频能量收集系统小型化、集成化的发展趋势,本文主要针对小型化宽带整流电路进行研究. 首先,提出了一种新型宽带阻抗匹配网络,该阻抗匹配网络具有结构简单、尺寸小的特点;然后,基于所提出的宽带阻抗匹配网络,设计了一种新型宽带小型化整流电路;最后,通过软件仿真和实验测试,对整流电路的性能进行了分析与验证.
整流电路包括阻抗匹配网络(TL1、TL2)、隔直电容(Cin)、肖特基二极管(HSMS 2862)、直通滤波器(Cout)和负载电阻(RL). 如图1所示,Cin和Cout的电容值分别为56和15 pF. 为了在宽频带范围内提高转换效率,设计了一种结构简单的阻抗匹配网络,它仅由2段微带传输线TL1和TL2构成. 从AA′、BB′和CC′这3个参考面看,输入阻抗分别记为Zin1、Zin2和Zin. 阻抗匹配网络的设计主要分为2个步骤:首先,选取2个合适的频点f1和f2作为目标频点,并通过微带线TL1将这2点的阻抗变换为一对共轭阻抗;然后,通过并联短路枝节线消除这对共轭阻抗的虚部,最终实现宽带阻抗匹配作用.
图1 提出的宽带整流电路原理图及其版图
首先,选定2个工作频点,记为f1和f2.f1=1.8 GHz,f2=2.8 GHz,此时,输入阻抗Zin1在f1和f2处对应的阻抗可以表示为
(1)
(2)
其中,Z1表示微带线TL1的特征阻抗,θa1和θa2分别表示TL1在频率f1和f2处对应的电长度.k=f2/f1(假设f2>f1). 由微波理论可知,电长度θa1和θa2的关系为θa2=kθa1,将其代入式(2)可得
(3)
(4)
联立式(3)和式(4)可得:
(5)
(6)
通常,n表示任意整数,为了便于加工,设置n=1.
图1中串联微带线TL1之后的输入阻抗记为Zin2,对应的导纳为Yin2. 微带线TL2的作用是消除Yin2的虚部,并保证其实部几乎不变. 经过TL1后的输入阻抗在f1和f2处具有共轭关系,由微波理论可知,导纳Yin1(f1) 和Yin1(f2)也存在共轭关系,因此下式成立:
Yin1(f1)=G-jB,
Yin1(f2)=G+jB.
(7)
为了尽量减小虚部对于匹配性能的影响,最为理想的情况是将虚部完全消除,因此可得:
(8)
由式(8)可得
(9)
(10)
通过以上分析与计算,可以获得微带线TL1和TL2的尺寸. TL1和TL2的宽度均为2.1 mm,长度分别为4.0 mm和12.0 mm.
选用AVAGO公司的HSMS 2862肖特基二极管作为整流器件,串联电阻为6 Ω,导通电压为0.3 V,击穿电压为7 V,零偏置结电容为0.18 pF. 整流电路通过ADS2011软件进行仿真与优化,整流电路通过ARLON AD255 N 板材进行加工与制作. 该介质板的介电常数为2.55,损耗角正切值为0.001 8,厚度为0.762 mm. 整流电路的整体尺寸为32 mm×15.4 mm×0.762 mm(图2). 整流电路中各段微带线的尺寸列于表1中.
图2 所提宽带整流电路照片
表1 微带线的尺寸Table 1 The dimensions of the microstrip line mm
测试系统如图3所示,其中,射频功率信号通过Keysight N5172 B 射频信号发生器产生,并通过同轴线送入整流电路中,通过数字万用表测试整流电路的输出电压.
图3 整流电路测试系统
在测试过程中,射频-直流的功率转换效率可以通过如下公式计算得到:
(11)
其中,Pout、Pin、Vout和RL分别表示输出直流功率、输入功率、输出直流电压以及负载电阻. 在本设计中,输入功率为14.8 dBm,负载电阻的值为1 kΩ.
为了验证整流电路的性能,对整流电路的效率和输出直流电压随频率的变化情况进行仿真与测试(图4). 当输入功率为14.8 dBm时,整流电路在1.79~3.01 GHz频带内,转换效率均大于60%,在1.91~3.32 GHz频带内,整流效率均大于50%. 在1.57~3.21 GHz频带内,整流电路的输出电压均大于3 V. 由图4可知,测试效率比仿真效率稍低,造成这一现象的原因可能是二极管模型的不准确性以及加工误差导致的.
输入回波损耗的仿真值与测试值随频率的变化(图5)结果表明:在1.91~3.32 GHz频带内,S11<-10 dB. 在2.67 GHz处,S11取得最小值-25.52 dB. 这里需要指出的是,由于测试所用矢量网络分析仪Keysight E5071C的最大输出功率为10 dBm,因此在测试S11时,输入功率为10 dBm,而并非前面所提到的最佳输入功率14.8 dBm.
图4 效率及输出电压随频率的变化
图5 输入回波损耗随频率的变化
图6~图8分别为整流电路在1.80、2.10和2.45 GHz频段,转换效率与输出电压随输入功率的变化情况. 当输入功率为15 dBm时,整流电路在1.80、2.10和2.45 GHz频带内获得最大转换效率,分别为 57.2%、72.4% 和73.0%. 为了更好地评估整流电路的性能,将所提出的宽带整流电路性能与近年来国内外公开报道的宽带整流电路进行对比(表2). 本文所提出的整流电路不仅具有宽带特性,而且尺寸更小,结构更简单.
图6 整流电路在1.80 GHz处的效率与输出电压随输入功率的变化
图7 在2.10 GHz处效率及输出电压随输入功率的变化
图8 在2.45 GHz处效率及输出电压随输入功率的变化
表2 与其他器件的性能对比Table 2 The comparison of performance with other devices
针对目前传统宽带整流电路存在尺寸大、结构复杂的问题,本文提出了一种新型宽带小型化整流电路的设计方法,并通过软件仿真与实验测试对所设计整流电路的性能进行了验证. 结果表明:当输入功率为14.8 dBm时,整流电路在1.79~3.01 GHz频带内,转换效率均大于60%,在1.91~3.32 GHz频带内,整流效率均大于50%. 最后,通过与近年来国内外相关文献报道的性能对比,可知本文所提出的整流电路具有良好的宽带特性,且尺寸小. 因此,该整流电路在宽带射频能量收集系统中具有重要的应用价值.