论数学的美

2020-12-04 02:52张娟娟
学习周报·教与学 2020年52期
关键词:文学数学

张娟娟

著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,也许美在她是探求世间现象规律的出发点,也许美在她用几个字母符号就能表示若干信息的简单明了,也许美在她大胆假设和严格论证的伟大结合,也许美在她对一个问题论证时殊途同归的奇妙感受,也许美在数学家耗尽终生论证定理的锲而不舍,也许美在她在几乎所有学科中的广泛应用。

而美的数学,在自古崇尚诗书传世的中国,竟也浸染着扑鼻的书香。中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样颜色,这就是数学的文采。

一、自然美

刘勰《文心雕龙》以为文章之可贵,在尚自然。文章是反映生活的一面镜子,脱离生活的文学是空洞的,没有任何用处。数学也是这样。

数学存在的意义,在于理性地揭示自然界的一些现象规律。可以这样说,数学是取诸生活而用诸生活的。数学最早的起源,大概来自古代人们的结绳记事,一个一个的绳扣,把数学的根和生活从一开始就牢牢地系在了一起。后来出现的记数法,是牲畜养殖或商品买卖的需要,古代的几何学产生,是为了丈量土地。中国古代的众多数学著作(如:《九章算术》)中,几乎全是对于某个具体问题的探究和推广。

在中国,数学源于生活,在外国,历代数学家也都宗法自然。阿基米德的数学成果,都用于当时的军事、建筑、工程等众多科学领域,牛顿见物象而思数学之所出,即有微积分的创作。费尔玛和尤拉对变分法的开创性发明也是由探索自然界的现象而引起的。

二、简洁美

世事再纷繁,加减乘除算尽;

宇宙虽广大,点线面体包完。

这首诗,用字不多,却到位地概括出了数学的简洁明了,微言大义。数学和诗歌一样,有着独特的简洁美。诗歌的简洁,众所周知——寥寥几字,却为读者创造出了广阔的想象空间,这大概正是诗歌的魅力所在。

美国著名心理学家布隆菲尔德说:“数学是语言所能达到的最高境界。”如果说,诗歌的简洁,是写意的,是欲言还休的,是中国水墨画中的留白,那么数学语言的微言大义,则是写实的,是简洁精确、抽象规范的,是严谨的科学态度的體现。目前,数学作为自然科学的语言和工具,已经成了所有科学——包括社会科学在内的语言和工具。最为典型的例子,莫过于二进制在计算机领域的的应用。试想,任何一个复杂的指令,都被译做明确的01数字串,这是多么伟大的一个构想。可以说,没有数学的简化,就没有现在这个互联网四通八达、信息技术飞速发展的时代。

三、对称美

中国的文学讲究对称,这点可以从历时百年的楹联文化中窥见一斑。而更胜一筹的对称,就是回文了。苏轼有一首著名的七律《游金山寺》,便是这方面的上乘之作:

潮随暗浪雪山倾,远浦渔舟钓月明。/桥对寺门松径小,槛当泉眼石波清。/迢迢绿树江天晓,霭霭红霞晚日晴。/遥望四边云接水,碧峰千点数鸥轻。

不难看出,把它倒转过来,仍然是一首完整的七律诗:

轻鸥数点千峰碧,水接云边四望遥。/晴日晚霞红霭霭,晓天江树绿迢迢。/清波石眼泉当槛,小径松门寺对桥。/明月钓舟渔浦远,倾山雪浪暗随潮。

这首回文诗无论是顺读或倒读,都是情景交融、清新可读的好诗。类似的又如“香莲碧水动风凉,水动风凉夏日长。长日夏凉风动水,凉风动水碧莲香”。这些诗凭着精巧的构思,给人以奇妙的感受,每每读之,读者都会暗自叫绝。

而数学中,也不乏这样的回文现象,如:

12×12=144,21×21=441;

13×13=169,31×31=961;

102×102=10404,201×201=40401;

103×103=10609,301×301=90601;

9+5+4=8+7+3,92+52+42=82+72+32。

而数学中更为一般的对称,则体现在函数图象的对称性和几何图形上。前者给我们探求函数的性质提供了方便,后者则运用在建筑、美术领域后给人以无穷的美感。

四、悬念美

文学中的小说以设置悬念见长,在开头先抛出一个引人入胜的画面、出人意料的事件、叫人揪心的矛盾、令人关注的悬念、发人深省的问题,然后一步步去描写、讲述、展开、解答、思考;或者在最后留下一个无结局、无论断、无答案、无终点的结尾,让读者自己去想象、去求证、去追问、去体验。照米兰·昆德拉的说法:小说家的才智就是把一切肯定变成疑问,教读者把世界当成问题来理解。

这种现象,在数学中绝非少见。这一点,和人们读悬疑小说所产生的感觉是相似的,难怪有人说,世界本身就是个未知数,而文学本身就是探索世界之谜的方程式。

五、逻辑美

提起逻辑,就不能不提中国四大名著之一的《红楼梦》。复杂的人物关系,缜密的故事情节,引得至今仍有大量学者终生考证,乐此不疲。

《红楼梦》迷人之处在于由卷初一首诗开始,章回紧扣地发展下来。优美的数学也是在一个宏观的概念之下,经由严谨的论证,简单有力地表达出来。

数学规律就如《红楼梦》,由一些基本定理出发,雅洁、鲜明地表达出来。大多数的数学论文都是艰涩难懂,有些却能令人流连再三。牛顿三大定律非常简单,但可以解释非常繁杂的现象,如天体运行的规律。这就是数学家的口味,不够严谨,经不起推敲,就不入法眼。

数学和文学作品不但同样讲究严谨的逻辑论证,还同样遵从由局部结构发展到大范围结构的发展规律。

同文学极为相似的是,从局部结构发展到大范围结构也是近代数学发展的过程。同一事或同一物可以产生不同的吟咏。对事物有不同的感受后,往往通过比兴的方法另有所指,例如“美人”有多重意思,除了指美丽的女子外,也可以指君主。屈原《九章》:“结微情以陈词兮,矫以遗夫美人。”也可以指品德美好的人,苏轼《赤壁赋》:“望美人兮天一方。”数论专家研究局部结构时则通过素数的模方法,将算术流形变成有限域上的几何,然后和大范围的算术几何对比,得出丰富的结果。此外,数学家对某些重要的定理,也会提出很多不同的证明。例如勾股定理的不同证明有十个以上,等周不等式亦有五六个证明,高斯则给出数论对偶定律六个不同的看法。不同的证明让我们以不同的角度去理解同一个事实,往往引导出数学上不同的发展。这也可算是局部到大范围的一个例子。

总之,数学并不像有些人认为的那般枯燥乏味,它不是长篇的定理公式的累积,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。

作者单位 :河南省洛阳市吉利区第一初级中学

猜你喜欢
文学数学
街头“诅咒”文学是如何出现的
我们爱数学
中外文学中的“顽童”
文学小说
我为什么怕数学
数学到底有什么用?
文学
文学社团简介
错在哪里